Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Demographically-Informed Prediction Discrepancy Index: Early Warnings of Demographic Biases for Unlabeled Populations

Mansilla, Lucas AndrésIcon ; Claucich, EstanislaoIcon ; Echeveste, Rodrigo SebastiánIcon ; Milone, Diego HumbertoIcon ; Ferrante, EnzoIcon
Fecha de publicación: 02/2024
Editorial: MIT Press
Revista: Transactions on Machine Learning Research
ISSN: 2835-8856
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

An ever-growing body of work has shown that machine learning systems can be systematically biased against certain sub-populations defined by attributes like race or gender.Data imbalance and under-representation of certain populations in the training datasetshave been identified as potential causes behind this phenomenon. However, understandingwhether data imbalance with respect to a specific demographic group may result in biasesfor a given task and model class is not simple. An approach to answering this question isto perform controlled experiments, where several models are trained with different imbalance ratios and then their performance is evaluated on the target population. However,in the absence of ground-truth annotations at deployment for an unseen population, mostfairness metrics cannot be computed. In this work, we explore an alternative method tostudy potential bias issues based on the output discrepancy of pools of models trained ondifferent demographic groups. Models within a pool are otherwise identical in terms ofarchitecture, hyper-parameters, and training scheme. Our hypothesis is that the outputconsistency between models may serve as a proxy to anticipate biases concerning demographic groups. In other words, if models tailored to different demographic groups produceinconsistent predictions, then biases are more prone to appear in the task under analysis. We formulate the Demographically-Informed Prediction Discrepancy Index (DIPDI)and validate our hypothesis in numerical experiments using both synthetic and real-worlddatasets. Our work sheds light on the relationship between model output discrepancy anddemographic biases and provides a means to anticipate potential bias issues in the absenceof ground-truth annotations. Indeed, we show how DIPDI could provide early warningsabout potential demographic biases when deploying machine learning models on new andunlabeled populations that exhibit demographic shifts.
Palabras clave: Biases , Unsupervised Methods , Machine Learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.116Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/266763
URL: https://openreview.net/forum?id=TorS8rxr3R
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Mansilla, Lucas Andrés; Claucich, Estanislao; Echeveste, Rodrigo Sebastián; Milone, Diego Humberto; Ferrante, Enzo; Demographically-Informed Prediction Discrepancy Index: Early Warnings of Demographic Biases for Unlabeled Populations; MIT Press; Transactions on Machine Learning Research; 2-2024; 1-24
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES