Mostrar el registro sencillo del ítem

dc.contributor.author
Roa Díaz, Simón Andre  
dc.contributor.author
Redondo, Carolina  
dc.contributor.author
Akinoglu, Goekalp Engin  
dc.contributor.author
Pedano, Maria Laura  
dc.contributor.author
Maguregui, Maite  
dc.contributor.author
Sirena, Martin  
dc.contributor.author
Morales, Rafael  
dc.date.available
2025-07-11T14:17:26Z  
dc.date.issued
2024-06  
dc.identifier.citation
Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-12  
dc.identifier.issn
2468-5194  
dc.identifier.uri
http://hdl.handle.net/11336/265829  
dc.description.abstract
Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
Molecular Sensing  
dc.subject
Surface-Enhanced Raman Spectroscopy  
dc.subject
2D Photonic Crystals  
dc.subject
Interference Laser Lithography  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-10T12:15:32Z  
dc.journal.volume
38  
dc.journal.pagination
1-12  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina  
dc.description.fil
Fil: Redondo, Carolina. Universidad del País Vasco; España  
dc.description.fil
Fil: Akinoglu, Goekalp Engin. University of Melbourne; Australia  
dc.description.fil
Fil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina  
dc.description.fil
Fil: Maguregui, Maite. Universidad del País Vasco; España  
dc.description.fil
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina  
dc.description.fil
Fil: Morales, Rafael. Universidad del País Vasco; España  
dc.journal.title
Materials Today Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468519424002076  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mtchem.2024.102101