Mostrar el registro sencillo del ítem
dc.contributor.author
Roa Díaz, Simón Andre
dc.contributor.author
Redondo, Carolina
dc.contributor.author
Akinoglu, Goekalp Engin
dc.contributor.author
Pedano, Maria Laura
dc.contributor.author
Maguregui, Maite
dc.contributor.author
Sirena, Martin
dc.contributor.author
Morales, Rafael
dc.date.available
2025-07-11T14:17:26Z
dc.date.issued
2024-06
dc.identifier.citation
Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-12
dc.identifier.issn
2468-5194
dc.identifier.uri
http://hdl.handle.net/11336/265829
dc.description.abstract
Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
Molecular Sensing
dc.subject
Surface-Enhanced Raman Spectroscopy
dc.subject
2D Photonic Crystals
dc.subject
Interference Laser Lithography
dc.subject.classification
Nano-materiales
dc.subject.classification
Nanotecnología
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-10T12:15:32Z
dc.journal.volume
38
dc.journal.pagination
1-12
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
dc.description.fil
Fil: Redondo, Carolina. Universidad del País Vasco; España
dc.description.fil
Fil: Akinoglu, Goekalp Engin. University of Melbourne; Australia
dc.description.fil
Fil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
dc.description.fil
Fil: Maguregui, Maite. Universidad del País Vasco; España
dc.description.fil
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
dc.description.fil
Fil: Morales, Rafael. Universidad del País Vasco; España
dc.journal.title
Materials Today Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468519424002076
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mtchem.2024.102101
Archivos asociados