Mostrar el registro sencillo del ítem
dc.contributor.author
Vazquez, Dana Valeria
dc.contributor.author
Spetale, Flavio Ezequiel
dc.contributor.author
Nankar, Amol N.
dc.contributor.author
Grozeva, Stanislava
dc.contributor.author
Rodríguez, Gustavo Rubén
dc.date.available
2025-05-26T11:16:49Z
dc.date.issued
2024-08
dc.identifier.citation
Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-18
dc.identifier.issn
2223-7747
dc.identifier.uri
http://hdl.handle.net/11336/262561
dc.description.abstract
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
morphology recognition
dc.subject
feature extraction
dc.subject
support vector machine
dc.subject.classification
Horticultura, Viticultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Machine Learning-Based Tomato Fruit Shape Classification System
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-26T09:36:09Z
dc.journal.volume
13
dc.journal.number
17
dc.journal.pagination
1-18
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
dc.description.fil
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Nankar, Amol N.. University of Georgia; Estados Unidos
dc.description.fil
Fil: Grozeva, Stanislava. No especifíca;
dc.description.fil
Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
dc.journal.title
Plants
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/17/2357
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/plants13172357
Archivos asociados