Mostrar el registro sencillo del ítem

dc.contributor.author
Vazquez, Dana Valeria  
dc.contributor.author
Spetale, Flavio Ezequiel  
dc.contributor.author
Nankar, Amol N.  
dc.contributor.author
Grozeva, Stanislava  
dc.contributor.author
Rodríguez, Gustavo Rubén  
dc.date.available
2025-05-26T11:16:49Z  
dc.date.issued
2024-08  
dc.identifier.citation
Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-18  
dc.identifier.issn
2223-7747  
dc.identifier.uri
http://hdl.handle.net/11336/262561  
dc.description.abstract
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
morphology recognition  
dc.subject
feature extraction  
dc.subject
support vector machine  
dc.subject.classification
Horticultura, Viticultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Machine Learning-Based Tomato Fruit Shape Classification System  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-26T09:36:09Z  
dc.journal.volume
13  
dc.journal.number
17  
dc.journal.pagination
1-18  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina  
dc.description.fil
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Nankar, Amol N.. University of Georgia; Estados Unidos  
dc.description.fil
Fil: Grozeva, Stanislava. No especifíca;  
dc.description.fil
Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina  
dc.journal.title
Plants  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/17/2357  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/plants13172357