Mostrar el registro sencillo del ítem

dc.contributor.author
Cano, Leonardo Ariel  
dc.contributor.author
Albarracin, Ana Lia  
dc.contributor.author
Pizá, Alvaro Gabriel  
dc.contributor.author
García Cena, Cecilia Elisabet  
dc.contributor.author
Fernández Jover, Eduardo  
dc.contributor.author
Farfan, Fernando Daniel  
dc.date.available
2025-05-07T18:14:31Z  
dc.date.issued
2024-02  
dc.identifier.citation
Cano, Leonardo Ariel; Albarracin, Ana Lia; Pizá, Alvaro Gabriel; García Cena, Cecilia Elisabet; Fernández Jover, Eduardo; et al.; Assessing Cognitive Workload in Motor Decision-Making through Functional Connectivity Analysis: Towards Early Detection and Monitoring of Neurodegenerative Diseases; Multidisciplinary Digital Publishing Institute; Sensors; 24; 4; 2-2024; 1-14  
dc.identifier.issn
1424-8220  
dc.identifier.uri
http://hdl.handle.net/11336/260688  
dc.description.abstract
Neurodegenerative diseases (NDs), such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis, and frontotemporal dementia, among others, are increasingly prevalent in the global population. The clinical diagnosis of these NDs is based on the detection and characterization of motor and non-motor symptoms. However, when these diagnoses are made, the subjects are often in advanced stages where neuromuscular alterations are frequently irreversible. In this context, we propose a methodology to evaluate the cognitive workload (CWL) of motor tasks involving decision-making processes. CWL is a concept widely used to address the balance between task demand and the subject’s available resources to complete that task. In this study, multiple models for motor planning during a motor decision-making task were developed by recording EEG and EMG signals in =17 healthy volunteers (9 males, 8 females, age 28.66±8.8 years). In the proposed test, volunteers have to make decisions about which hand should be moved based on the onset of a visual stimulus. We computed functional connectivity between the cortex and muscles, as well as among muscles using both corticomuscular and intermuscular coherence. Despite three models being generated, just one of them had strong performance. The results showed two types of motor decision-making processes depending on the hand to move. Moreover, the central processing of decision-making for the left hand movement can be accurately estimated using behavioral measures such as planning time combined with peripheral recordings like EMG signals. The models provided in this study could be considered as a methodological foundation to detect neuromuscular alterations in asymptomatic patients, as well as to monitor the process of a degenerative disease.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
neurodegenerative diseases  
dc.subject
cognitive workload  
dc.subject
statistical modeling  
dc.subject
motor planning  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Assessing Cognitive Workload in Motor Decision-Making through Functional Connectivity Analysis: Towards Early Detection and Monitoring of Neurodegenerative Diseases  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-07T10:50:25Z  
dc.journal.volume
24  
dc.journal.number
4  
dc.journal.pagination
1-14  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Cano, Leonardo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina  
dc.description.fil
Fil: Albarracin, Ana Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina  
dc.description.fil
Fil: Pizá, Alvaro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina  
dc.description.fil
Fil: García Cena, Cecilia Elisabet. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Fernández Jover, Eduardo. Universidad de Miguel Hernández; España  
dc.description.fil
Fil: Farfan, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina  
dc.journal.title
Sensors  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/24/4/1089  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/s24041089