Mostrar el registro sencillo del ítem

dc.date.available
2025-04-11T09:35:34Z  
dc.identifier.citation
Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500  
dc.identifier.uri
http://hdl.handle.net/11336/258500  
dc.description.abstract
We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-sa/2.5/ar/  
dc.title
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación  
dc.type
dataset  
dc.date.updated
2025-03-19T09:18:10Z  
dc.description.fil
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina  
dc.description.fil
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; Argentina  
dc.description.fil
Fil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; Chile  
dc.description.fil
Fil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; Chile  
dc.description.fil
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina  
dc.description.fil
Fil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; Chile  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; Chile  
dc.description.fil
Fil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá  
dc.datacite.PublicationYear
2025  
dc.datacite.Creator
Tramontina Videla, Diego Ramiro  
dc.datacite.Creator
Deluigi, Orlando Raul  
dc.datacite.Creator
Rojas Nuñez, Javier  
dc.datacite.Creator
Valencia, Felipe  
dc.datacite.Creator
Pasianot, Roberto Cesar  
dc.datacite.Creator
Baltazar, Samuel E.  
dc.datacite.Creator
Gonzalez Valdes, Rafael Ignacio  
dc.datacite.Creator
Bringa, Eduardo Marcial  
dc.datacite.Creator
Pinzon, Reinhardt  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza  
dc.datacite.affiliation
Universidad de Mendoza  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza  
dc.datacite.affiliation
Universidad Tecnologica de Panamá.  
dc.datacite.affiliation
Universidad de Mendoza  
dc.datacite.affiliation
Universidad de Santiago de Chile  
dc.datacite.affiliation
Center For Development Of Nanoscience And Technology  
dc.datacite.affiliation
Center For Development Of Nanoscience And Technology  
dc.datacite.affiliation
Universidad Católica de Maule  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.affiliation
Comisión Nacional de Energía Atómica  
dc.datacite.affiliation
Universidad Nacional de San Martín. Instituto Sabato  
dc.datacite.affiliation
Center For Development Of Nanoscience And Technology  
dc.datacite.affiliation
Universidad de Santiago de Chile  
dc.datacite.affiliation
Center For Development Of Nanoscience And Technology  
dc.datacite.affiliation
Universidad Mayor.  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza  
dc.datacite.affiliation
Universidad de Mendoza  
dc.datacite.affiliation
Universidad Mayor.  
dc.datacite.affiliation
Universidad Tecnologica de Panamá.  
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.subject
Ingeniería de los Materiales  
dc.datacite.subject
Ingeniería de los Materiales  
dc.datacite.subject
INGENIERÍAS Y TECNOLOGÍAS  
dc.datacite.date
01/08/2023-01/08/2023  
dc.datacite.DateType
Creado  
dc.datacite.language
eng  
dc.datacite.AlternateIdentifierType
info:eu-repo/semantics/altIdentifier/url/https://www.ctcms.nist.gov/potentials/entry/2023--Tramontina-D-R-Deluigi-O-R-Pinzon-R-et-al--Fe-Cu-Ni/2023--Tramontina-D-R--Fe-Cu-Ni--LAMMPS--ipr1.html  
dc.datacite.version
1.0  
dc.datacite.description
The current interatomic potential is a modified version of the 2009--Bonny-G-Pasianot-R-C-Castin-N-Malerba-L--Fe-Cu-Ni (https://www.ctcms.nist.gov/potentials/entry/2009--Bonny-G-Pasianot-R-C-Castin-N-Malerba-L--Fe-Cu-Ni/), which includes the ZBL (Ziegler-Biersack-Littmark) correction at short distances, and allows for a correct output in collision cascade simulations. The Ni embedding function is currently modified for densities beyond 1.5 times the equilibrium value, allowing a smooth EoS (Equation of State) behavior. All the modifications presented here, has no impact in any of the previously published results. DISCLAIMER: The users should ensure that the particular conditions of their simulations, match the ones used for the calculation of the present interatomic potential.  
dc.datacite.DescriptionType
Otro  
dc.datacite.FundingReference
PICTO-UM-2019-0048  
dc.datacite.FundingReference
T1-UNCUYO 06/B022-SIIP  
dc.datacite.FundingReference
275-2016-FID  
dc.datacite.FundingReference
EIE18-16  
dc.datacite.FunderName
Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica  
dc.datacite.FunderName
Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales  
dc.datacite.FunderName
SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ  
dc.datacite.FunderName
SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ  
dc.relationtype.isSourceOf
11336/222596  
dc.subject.keyword
Interatomic Potentials  
dc.subject.keyword
Fe Cu Ni  
dc.subject.keyword
Molecular Dynamics  
dc.subject.keyword
Radiation Damage  
dc.datacite.resourceTypeGeneral
dataset  
dc.conicet.datoinvestigacionid
25477  
dc.datacite.awardTitle
Atomistic simulation of materials for future energy solutions  
dc.datacite.awardTitle
Simulations of nano and micro systems.  
dc.datacite.awardTitle
Aplicaciones de simulaciones y programación CUDA: Estudios a escala atómica, fenómenos climáticos y ópticos.  
dc.datacite.awardTitle
Apicaciones de computación de alto rendimiento: Estudios a diferentes escalas y fenómenos.  
dc.conicet.justificacion
Los datos refieren a un potential interatómico que puede emplearse en simulaciones de materiales con la técnica de dinámica molecular. No existe correspondencia entre estos datos y localización geografica alguna.  
dc.datacite.formatedDate
2023