Mostrar el registro sencillo del ítem

dc.contributor.author
Salazar, Eduardo J.  
dc.contributor.author
Rosero, Verónica  
dc.contributor.author
Gabrielski, Jawana  
dc.contributor.author
Samper, Mauricio Eduardo  
dc.date.available
2025-03-19T09:53:58Z  
dc.date.issued
2024-03  
dc.identifier.citation
Salazar, Eduardo J.; Rosero, Verónica; Gabrielski, Jawana ; Samper, Mauricio Eduardo; Demand response model: A cooperative-competitive multi-agent reinforcement learning approach; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 133; 3-2024; 1-12  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/256518  
dc.description.abstract
This study introduces a novel Demand Response (DR) Model based on Multi-agent Reinforcement Learning (MARL-DR), comprised of a pricing and incentives scheme aimed at improving the accuracy of existing demand response strategies. Furthermore, this new approach represents a flexibility solution to prevent sharp price variations caused by the high penetration of unconventional renewable energy, which are directly passed on to end-users. The model employs a cooperative-competitive MARL-DR technique based on Q-learning, with the goal of determining optimal prices and incentives that maximize benefits for both customers and electric Service Provider (SP). In this regard, the model has the capability to offer customers pricing options in both real-time and time-of-use, to actively adjust each user´s consumption. Additionally, through demand characterization factors, such as the coincidence factor (CF), the of typical user behavior is improved, and the influence of individual user demand on system peak demand is more accurately detected. It is also demonstrated that the cooperative-competitive approach offers better performance compared to other approaches. Finally, a sensitivity analysis is presented at various stages of the model to verify its accuracy and efficiency in pricing and incentives formulation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEMAND RESPONSE  
dc.subject
MULTI-AGENT  
dc.subject
PRICE-BASED  
dc.subject
INCENTIVE-BASED  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Demand response model: A cooperative-competitive multi-agent reinforcement learning approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-18T13:35:51Z  
dc.journal.volume
133  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Salazar, Eduardo J.. Universidad Nacional de San Juan; Argentina  
dc.description.fil
Fil: Rosero, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina  
dc.description.fil
Fil: Gabrielski, Jawana. Universität Dortmund; Alemania  
dc.description.fil
Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2024.108273