Mostrar el registro sencillo del ítem
dc.contributor.author
Salazar, Eduardo J.
dc.contributor.author
Rosero, Verónica
dc.contributor.author
Gabrielski, Jawana
dc.contributor.author
Samper, Mauricio Eduardo
dc.date.available
2025-03-19T09:53:58Z
dc.date.issued
2024-03
dc.identifier.citation
Salazar, Eduardo J.; Rosero, Verónica; Gabrielski, Jawana ; Samper, Mauricio Eduardo; Demand response model: A cooperative-competitive multi-agent reinforcement learning approach; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 133; 3-2024; 1-12
dc.identifier.issn
0952-1976
dc.identifier.uri
http://hdl.handle.net/11336/256518
dc.description.abstract
This study introduces a novel Demand Response (DR) Model based on Multi-agent Reinforcement Learning (MARL-DR), comprised of a pricing and incentives scheme aimed at improving the accuracy of existing demand response strategies. Furthermore, this new approach represents a flexibility solution to prevent sharp price variations caused by the high penetration of unconventional renewable energy, which are directly passed on to end-users. The model employs a cooperative-competitive MARL-DR technique based on Q-learning, with the goal of determining optimal prices and incentives that maximize benefits for both customers and electric Service Provider (SP). In this regard, the model has the capability to offer customers pricing options in both real-time and time-of-use, to actively adjust each user´s consumption. Additionally, through demand characterization factors, such as the coincidence factor (CF), the of typical user behavior is improved, and the influence of individual user demand on system peak demand is more accurately detected. It is also demonstrated that the cooperative-competitive approach offers better performance compared to other approaches. Finally, a sensitivity analysis is presented at various stages of the model to verify its accuracy and efficiency in pricing and incentives formulation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEMAND RESPONSE
dc.subject
MULTI-AGENT
dc.subject
PRICE-BASED
dc.subject
INCENTIVE-BASED
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Demand response model: A cooperative-competitive multi-agent reinforcement learning approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-18T13:35:51Z
dc.journal.volume
133
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Salazar, Eduardo J.. Universidad Nacional de San Juan; Argentina
dc.description.fil
Fil: Rosero, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.description.fil
Fil: Gabrielski, Jawana. Universität Dortmund; Alemania
dc.description.fil
Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.journal.title
Engineering Applications Of Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2024.108273
Archivos asociados