Mostrar el registro sencillo del ítem
dc.contributor.author
Restrepo, Juan F.
dc.contributor.author
Mateos, Diego Martín
dc.contributor.author
Díaz López, Juan M.
dc.date.available
2025-03-14T12:19:39Z
dc.date.issued
2023-09
dc.identifier.citation
Restrepo, Juan F.; Mateos, Diego Martín; Díaz López, Juan M.; A Transfer entropy-based methodology to analyze information flow under eyes-open and eyes-closed conditions with a clinical perspective; Elsevier; Biomedical Signal Processing and Control; 86; 9-2023; 1-9
dc.identifier.issn
1746-8094
dc.identifier.uri
http://hdl.handle.net/11336/256188
dc.description.abstract
Studying brain dynamics under normal or pathological conditions has proven to be a challenging task, as there is no unified consensus on the best approach. In this article, we present a methodology based on Transfer Entropy to study the information flow between different brain hemispheres in healthy subjects during eyes-open (EO) and eyes-closed (EC) resting states. We used an experimental setup that mimics the technical conditions found in clinical settings and collected data sets from short records of 24 channels electroencephalogram (EEG) at a sampling rate of 65 Hz. Our methodology accounts for interhemispheric and intrahemispheric information flow analysis in both conditions and relies on 4 indexes calculated from the transfer entropy estimations between EEG channels. These indexes provide information on the number, strength, and directionality of active connections. Our results suggest an increase in information transfer in the EC condition for the alpha, beta1, and beta2 frequency bands, but no preferred direction of interhemispheric information movement under either condition. These results are consistent with previously reported studies conducted with denser EEG recordings sampled at a higher rate. In conclusion, our methodology shows a significant difference in the brain’s dynamics of information transfer between EO and EC resting states, which can also be applied to regular clinical sessions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INFORMATION FLOW
dc.subject
TRANSFER ENTROPY
dc.subject
BRAIN DYNAMICS
dc.subject
EEG
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Transfer entropy-based methodology to analyze information flow under eyes-open and eyes-closed conditions with a clinical perspective
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-12T11:55:20Z
dc.journal.volume
86
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Restrepo, Juan F.. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Bioingeniería; Argentina
dc.description.fil
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Autonoma de Entre Rios. Facultad de Ciencia y Tecnologia. Departamento de Fisica.; Argentina
dc.description.fil
Fil: Díaz López, Juan M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Biomedical Signal Processing and Control
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1746809423006146
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bspc.2023.105181
Archivos asociados