Mostrar el registro sencillo del ítem

dc.contributor.author
Herzog, Rubén  
dc.contributor.author
Mediano, Pedro A. M.  
dc.contributor.author
Rosas, Fernando E.  
dc.contributor.author
Luppi, Andrea I.  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Tagliazucchi, Enzo Rodolfo  
dc.contributor.author
Kringelbach, Morten L.  
dc.contributor.author
Cofré, Rodrigo  
dc.contributor.author
Deco, Gustavo  
dc.date.available
2025-01-08T09:48:36Z  
dc.date.issued
2024-12  
dc.identifier.citation
Herzog, Rubén; Mediano, Pedro A. M.; Rosas, Fernando E.; Luppi, Andrea I.; Sanz Perl Hernandez, Yonatan; et al.; Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF; MIT Press; Network Neuroscience; 8; 4; 12-2024; 1590-1612  
dc.identifier.issn
2472-1751  
dc.identifier.uri
http://hdl.handle.net/11336/251968  
dc.description.abstract
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances—including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm—the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MIT Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Whole-brain model  
dc.subject
Mean-field model  
dc.subject
Neuroimaging  
dc.subject
Local Inhibition  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-06T15:29:49Z  
dc.journal.volume
8  
dc.journal.number
4  
dc.journal.pagination
1590-1612  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Herzog, Rubén. Paris Brain Institute; Francia  
dc.description.fil
Fil: Mediano, Pedro A. M.. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Rosas, Fernando E.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Luppi, Andrea I.. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile  
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Cofré, Rodrigo. Universite Paris-saclay (universite Paris-saclay);  
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España  
dc.journal.title
Network Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/8/4/1590/123888/Neural-mass-modeling-for-the-masses-Democratizing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/netn_a_00410