Mostrar el registro sencillo del ítem
dc.contributor.author
Herzog, Rubén
dc.contributor.author
Mediano, Pedro A. M.
dc.contributor.author
Rosas, Fernando E.
dc.contributor.author
Luppi, Andrea I.
dc.contributor.author
Sanz Perl Hernandez, Yonatan
dc.contributor.author
Tagliazucchi, Enzo Rodolfo
dc.contributor.author
Kringelbach, Morten L.
dc.contributor.author
Cofré, Rodrigo
dc.contributor.author
Deco, Gustavo
dc.date.available
2025-01-08T09:48:36Z
dc.date.issued
2024-12
dc.identifier.citation
Herzog, Rubén; Mediano, Pedro A. M.; Rosas, Fernando E.; Luppi, Andrea I.; Sanz Perl Hernandez, Yonatan; et al.; Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF; MIT Press; Network Neuroscience; 8; 4; 12-2024; 1590-1612
dc.identifier.issn
2472-1751
dc.identifier.uri
http://hdl.handle.net/11336/251968
dc.description.abstract
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances—including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm—the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MIT Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Whole-brain model
dc.subject
Mean-field model
dc.subject
Neuroimaging
dc.subject
Local Inhibition
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-01-06T15:29:49Z
dc.journal.volume
8
dc.journal.number
4
dc.journal.pagination
1590-1612
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Herzog, Rubén. Paris Brain Institute; Francia
dc.description.fil
Fil: Mediano, Pedro A. M.. University of Cambridge; Reino Unido
dc.description.fil
Fil: Rosas, Fernando E.. University of Oxford; Reino Unido
dc.description.fil
Fil: Luppi, Andrea I.. University of Cambridge; Reino Unido
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
dc.description.fil
Fil: Cofré, Rodrigo. Universite Paris-saclay (universite Paris-saclay);
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
dc.journal.title
Network Neuroscience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/8/4/1590/123888/Neural-mass-modeling-for-the-masses-Democratizing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/netn_a_00410
Archivos asociados