Mostrar el registro sencillo del ítem

dc.contributor.author
Cesaratto, Eda  
dc.date.available
2024-11-20T12:16:53Z  
dc.date.issued
2009-10  
dc.identifier.citation
Cesaratto, Eda; A note on “Euclidean algorithms are Gaussian” by V. Baladi and B. Vallée; Academic Press Inc Elsevier Science; Journal Of Number Theory; 129; 10; 10-2009; 2267-2273  
dc.identifier.issn
0022-314X  
dc.identifier.uri
http://hdl.handle.net/11336/248337  
dc.description.abstract
The paper “Euclidean algorithms are Gaussian” [V. Baladi, B. Vallée, Euclidean algorithm are Gaussian, J. Number Theory 110 (2005) 331–386], is devoted to the distributional analysis of three variants of Euclidean algorithms. The Central Limit Theorem and the Local Limit Theorem obtained there are the first ones in the context of the “dynamical analysis” method. The techniques developed have been applied in further various works (e.g. [V. Baladi, A. Hachemi, A local limit theorem with speed of convergence for Euclidean algorithms and Diophantine costs, Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 749–770; E. Cesaratto, J. Clément, B. Daireaux, L. Lhote, V. Maume, B. Vallée, Analysis of fast versions of the Euclid algorithm, in: Proceedings of Third Workshop on Analytic Algorithmics and Combinatorics, ANALCO'08, SIAM, 2008; E. Cesaratto, A. Plagne, B. Vallée, On the non-randomness of modular arithmetic progressions, in: Fourth Colloquium on Mathematics and Computer Science. Algorithms, Trees, Combinatorics and Probabilities, in: Discrete Math. Theor. Comput. Sci. Proc., vol. AG, 2006, pp. 271–288]). These theorems are proved first for an auxiliary probabilistic model, called “the smoothed model,” and after, the estimates are transferred to the “true” probabilistic model. In this note, we remark that “the smoothed model” described in [V. Baladi, B. Vallée, Euclidean algorithm are Gaussian, J. Number Theory 110 (2005) 331–386] is not adapted to this transfer and replaces it by an adapted one. However, the results remain unchanged.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Distributional analysis  
dc.subject
Euclidean algorithms  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A note on “Euclidean algorithms are Gaussian” by V. Baladi and B. Vallée  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-11T14:40:18Z  
dc.journal.volume
129  
dc.journal.number
10  
dc.journal.pagination
2267-2273  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cesaratto, Eda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina  
dc.journal.title
Journal Of Number Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022314X09001139  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jnt.2009.02.018