Mostrar el registro sencillo del ítem
dc.contributor.author
Angiono, Iván Ezequiel
dc.contributor.author
Lentner, Simon
dc.contributor.author
Sanmarco, Guillermo Luis
dc.date.available
2024-11-19T17:47:51Z
dc.date.issued
2023-09-01
dc.identifier.citation
Angiono, Iván Ezequiel; Lentner, Simon; Sanmarco, Guillermo Luis; Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings; London Mathematical Society; Proceedings of the London Mathematical Society; 127; 4; 1-9-2023; 1185-1245
dc.identifier.issn
0024-6115
dc.identifier.uri
http://hdl.handle.net/11336/248305
dc.description.abstract
We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a nonabelian group with nonsimple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch–Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over nonabelian groups by Heckenberger–Vendramin, which consist of low-rank exceptions and large-rank families. We prove that the large-rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large-rank families, prove generation in degree 1, and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
London Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
NICHOLS ALGEBRAS
dc.subject
HOPF ALGEBRAS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Pointed Hopf algebras over nonabelian groups with nonsimple standard braidings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-19T15:21:26Z
dc.identifier.eissn
1460-244X
dc.journal.volume
127
dc.journal.number
4
dc.journal.pagination
1185-1245
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Lentner, Simon. Universitat Hamburg. Fakutat Fur Mathematik, Informak Und Naturwissenschaften.;
dc.description.fil
Fil: Sanmarco, Guillermo Luis. Iowa State University; Estados Unidos
dc.journal.title
Proceedings of the London Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/plms.12559
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12559
Archivos asociados