Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Unsupervised classification algorithm based on EM method for polarimetric SAR images

Fernández Michelli, Juan IgnacioIcon ; Hurtado, MartinIcon ; Areta, Javier AlbertoIcon ; Muravchik, Carlos Horacio
Fecha de publicación: 07/2016
Editorial: Elsevier Science
Revista: Isprs Journal Of Photogrammetry And Remote Sensing
ISSN: 0924-2716
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality.
Palabras clave: Bic , Classification , Expectation Maximization , Gaussian Mixture , Mixture Reduction , Sar Images
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.732Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/24748
URL: http://www.sciencedirect.com/science/article/pii/S0924271616000587
DOI: http://dx.doi.org/10.1016/j.isprsjprs.2016.03.001
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Unsupervised classification algorithm based on EM method for polarimetric SAR images; Elsevier Science; Isprs Journal Of Photogrammetry And Remote Sensing; 117; 7-2016; 56-65
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES