Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Model selection: Using information measures from ordinal symbolic analysis to select model sub-grid scale parameterizations

Pulido, Manuel ArturoIcon ; Rosso, Osvaldo A.
Fecha de publicación: 30/06/2017
Editorial: American Meteorological Society
Revista: Journal of The Atmospheric Sciences
ISSN: 0022-4928
e-ISSN: 1520-0469
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The use of information measures for model selection in geophysical models with subgrid parameterizations is examined.} Although the resolved dynamical equations of atmospheric or oceanic global numerical models are well established, the development and evaluation of parameterizations that represent subgrid-scale effects  pose a big challenge. For climate studies, the parameters or parameterizations are usually selected according to a root-mean-square error criterion, that measures the differences between the model state evolution and observations along the trajectory. However, inaccurate initial conditions and systematic model errors contaminate root-mean-square error measures. In this work, information theory quantifiers, in particular Shannon entropy, statistical complexity and Jensen-Shannon divergence, are evaluated as measures of the model dynamics. An ordinal analysis is conducted using the Bandt-Pompe symbolic data reduction in the signals. The proposed ordinal information measures are examined in the two-scale Lorenz´96 system. By comparing the two-scale Lorenz´96 system signals with a one-scale Lorenz´96 system with deterministic and stochastic parameterizations, we show that information measures are able to select the correct model and to distinguish the parameterizations including the degree of stochasticity that results in the closest model dynamics to the two-scale Lorenz´96 system.
Palabras clave: Stochastic Parameterization , Information Theory , Ordinal Analysis , Pdf Estimation
Ver el registro completo
 
Archivos asociados
Tamaño: 4.134Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/24167
URL: http://journals.ametsoc.org/doi/10.1175/JAS-D-16-0340.1
DOI: https://doi.org/10.1175/JAS-D-16-0340.1
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Pulido, Manuel Arturo; Rosso, Osvaldo A.; Model selection: Using information measures from ordinal symbolic analysis to select model sub-grid scale parameterizations; American Meteorological Society; Journal of The Atmospheric Sciences; 30-6-2017; 1-50
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES