Mostrar el registro sencillo del ítem
dc.contributor.author
Manassaldi, Juan Ignacio
dc.contributor.author
Incer Valverde, Jimena
dc.contributor.author
Morosuk, Tatiana
dc.contributor.author
Mussati, Sergio Fabian
dc.date.available
2024-05-16T10:51:14Z
dc.date.issued
2024-01
dc.identifier.citation
Manassaldi, Juan Ignacio; Incer Valverde, Jimena; Morosuk, Tatiana; Mussati, Sergio Fabian; A novel approach for optimizing the natural gas liquefaction process; Elsevier; Chemical Engineering Research & Design; 202; 1-2024; 489-505
dc.identifier.issn
0263-8762
dc.identifier.uri
http://hdl.handle.net/11336/235461
dc.description.abstract
The conversion of natural gas into liquefied natural gas (LNG) requires substantial energy consumption. This study proposes a deterministic mathematical model to find the optimal operation conditions for an LNG plant to minimize the energy consumption for turbomachinery and the total thermal conductance of the heat exchangers. General Algebraic Modeling System (GAMS) linked to a Dynamic Link Library was used to calculate the thermodynamic properties of the working fluids. A derivative-based optimization algorithm is used. Results indicate that the novel optimization approach allows the satisfactory management of the model nonlinearities associated, for example, with the bilinear terms involved in the energy balances and the mathematical functions used to calculate the thermodynamic properties. A preprocessing phase for initializing process variables is developed to facilitate model convergence. In comparison to an optimal design reported in the literature, which was obtained by integrating a well-established evolutionary optimization approach with the Aspen HYSYS simulator, the results indicated that the net electrical power could be reduced by up to 10% when the derivative-based optimization algorithm is used. The proposed deterministic approach, consisting of a mathematical model, an initialization phase, and an optimization algorithm, can help process engineers overcome the challenges associated with LNG process optimization.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Refrigeration
dc.subject
LNG
dc.subject
Optimization
dc.subject
General Algebraic Modeling System optimization
dc.subject
deterministic mathematical model
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A novel approach for optimizing the natural gas liquefaction process
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-14T13:43:52Z
dc.journal.volume
202
dc.journal.pagination
489-505
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Manassaldi, Juan Ignacio. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Incer Valverde, Jimena. Freie Universität Berlin; Alemania
dc.description.fil
Fil: Morosuk, Tatiana. Freie Universität Berlin; Alemania
dc.description.fil
Fil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Chemical Engineering Research & Design
dc.rights.embargoDate
2024-07-16
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cherd.2024.01.003
Archivos asociados