Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach

Musso, Mariel FernandaIcon ; Moyano, Sebastián; Rico Picó, Josué; Conejero, Ángela; Ballesteros Duperón, María Ángeles; Cascallar, Eduardo; Rueda, María Rosario
Fecha de publicación: 05/2023
Editorial: MDPI
Revista: Children
ISSN: 2227-9067
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología

Resumen

Effortful control (EC) is a dimension of temperament that encompass individual differences in self-regulation and the control of reactivity. Much research suggests that EC has a strong foundation on the development of executive attention, but increasing evidence also shows a significant contribution of the rearing environment to individual differences in EC. The aim of the current study was to predict the development of EC at 36 months of age from early attentional and environmental measures taken in infancy using a machine learning approach. A sample of 78 infants participated in a longitudinal study running three waves of data collection at 6, 9, and 36 months of age. Attentional tasks were administered at 6 months of age, with two additional measures (i.e., one attentional measure and another self-restraint measure) being collected at 9 months of age. Parents reported household environment variables during wave 1, and their child’s EC at 36 months. A machine learning algorithm was implemented to identify children with low EC scores at 36 months of age. An “attention only” model showed greater predictive sensitivity than the “environmental only” model. However, a model including both attentional and environmental variables was able to classify the groups (Low-EC vs. Average-to-High EC) with 100% accuracy. Sensitivity analyses indicate that socioeconomic variables together with attention control processes at 6 months, and self-restraint capacity at 9 months, are the most important predictors of EC.
Palabras clave: Effortful control , Self-regulation , Attention , Artificial neural networks , Prediction , Machine learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 871.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/234177
DOI: http://dx.doi.org/10.3390/children10060982
URL: https://www.mdpi.com/2227-9067/10/6/982
Colecciones
Articulos(CIIPME)
Articulos de CENTRO INTER. DE INV. EN PSICOLOGIA MATEMATICA Y EXP. "DR. HORACIO J.A RIMOLDI"
Citación
Musso, Mariel Fernanda; Moyano, Sebastián; Rico Picó, Josué; Conejero, Ángela; Ballesteros Duperón, María Ángeles; et al.; Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach; MDPI; Children; 10; 6; 5-2023; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES