Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Dynamic customer demand management: A reinforcement learning model based on real-time pricing and incentives

Salazar, Eduardo J.; Samper, Mauricio EduardoIcon ; Patiño, Héctor Daniel
Fecha de publicación: 09/2023
Editorial: Elsevier
Revista: Renewable Energy Focus
ISSN: 1755-0084
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

The demand response model proposed in this work offers a game-changing solution to the challenges posed by the unpredictability of renewable energy sources. By combining both pricing and incentives, this model significantly improves the accuracy of demand response strategies, leading to more effective modulation of customer demand. The real-time and time-of-use pricing options presented to customers incentivize them to actively increase or decrease their energy consumption, thereby contributing to the stability of the energy grid. This work also sheds light on the crucial role that characteristic parameters such as the internal or external coincidence factor play in the classification of customers using the k-means algorithm. The reinforcement learning method used in the model not only optimizes prices and incentives, but also ensures that both customers and energy distribution companies benefit equally. A sensitivity analysis of customer elasticity highlights the dynamic interplay between clustering and reinforcement learning algorithms and customer behavior, demonstrating the power and effectiveness of this model. With its innovative approach and cutting-edge techniques, this work sets a new model for demand response and makes a compelling case for the inclusion of prices and incentives in future models.
Palabras clave: INCENTIVE-BASED DEMAND RESPONSE , K-MEANS ALGORITHM , PRICE-BASED DEMAND RESPONSE , REINFORCEMENT Q-LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.435Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/231464
DOI: http://dx.doi.org/10.1016/j.ref.2023.05.004
Colecciones
Articulos(IEE)
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Citación
Salazar, Eduardo J.; Samper, Mauricio Eduardo; Patiño, Héctor Daniel; Dynamic customer demand management: A reinforcement learning model based on real-time pricing and incentives; Elsevier; Renewable Energy Focus; 46; 9-2023; 39-56
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES