Artículo
Learning the model from the data
Fecha de publicación:
09/2023
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as L2(Rd), and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cabrelli, Carlos; Molter, Ursula Maria; Learning the model from the data; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 141-152
Compartir
Altmétricas