Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Alzheimer disease recognition using speech-based embeddings from pre-trained models

Gauder, María LaraIcon ; Pepino, Leonardo DanielIcon ; Ferrer, LucianaIcon ; Riera, Pablo
Fecha de publicación: 09/2021
Editorial: International Speech Communication Association
Revista: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISSN: 2308-457X
e-ISSN: 1990-9772
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

This paper describes our submission to the ADreSSo Challenge, which focuses on the problem of automatic recognition of Alzheimer's Disease (AD) from speech. The audio samples contain speech from the subjects describing a picture with the guidance of an experimenter. Our approach to the problem is based on the use of embeddings extracted from different pretrained models - trill, allosaurus, and wav2vec 2.0 - which were trained to solve different speech tasks. These features are modeled with a neural network that takes short segments of speech as input, generating an AD score per segment. The final score for an audio file is given by the average over all segments in the file. We include ablation results to show the performance of different feature types individually and in combination, a study of the effect of the segment size, and an analysis of statistical significance. Our results on the test data for the challenge reach an accuracy of 78.9%, outperforming both the acoustic and linguistic baselines provided by the organizers.
Palabras clave: ADRESSO CHALLENGE , ALZHEIMER'S DISEASE RECOGNITION , COMPUTATIONAL PARALINGUISTICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 215.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228670
DOI: http://dx.doi.org/10.21437/Interspeech.2021-753
URL: https://www.isca-archive.org/interspeech_2021/gauder21_interspeech.html
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Gauder, María Lara; Pepino, Leonardo Daniel; Ferrer, Luciana; Riera, Pablo; Alzheimer disease recognition using speech-based embeddings from pre-trained models; International Speech Communication Association; Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH; 6; 9-2021; 4186-4190
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES