Mostrar el registro sencillo del ítem

dc.contributor.author
Gomez, Juan Abel  
dc.contributor.author
Rossomando, Francisco Guido  
dc.contributor.author
Capraro Fuentes, Flavio Andres  
dc.contributor.author
Soria, Carlos Miguel  
dc.date.available
2024-02-21T14:49:59Z  
dc.date.issued
2023-06  
dc.identifier.citation
Gomez, Juan Abel; Rossomando, Francisco Guido; Capraro Fuentes, Flavio Andres; Soria, Carlos Miguel; Neural compensator for PI soil moisture control; Springer; Neural Computing And Applications; 35; 26; 6-2023; 19131-19144  
dc.identifier.issn
0941-0643  
dc.identifier.uri
http://hdl.handle.net/11336/227838  
dc.description.abstract
The spatial and temporal variability of a cultivated soil, with technified irrigation systems, requires adaptive control systems to the varying conditions of the water–soil–crop intersystem. Therefore, an adaptive control based on a Radial Basis Function Neural Network (RBF-NN) is proposed in this paper. A static Proportional-Integral (PI) controller was tuned without modifying its parameters by adding a compensation based on RBF-NNs. In this way, the dynamic variation is approximated in real time by means of a RBF-NN. The controller is tested in simulation from a model of water distribution in the soil with extraction by a crop. The results obtained with this method are compared with a traditional Proportional-Integral-Derivative (PID) controller. The comparisons are made taking into account compromise between the amount of water applied and irrigation frequency to keep soil moisture values within the allowed limits. Water savings of 20% and a reduced valve activations 2 times less than the traditional PID were achieved. Finally, the behavior of the controller in the event of disturbances was evaluated, verifying the rejection it produces in the face of these eventualities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONTROL SYSTEMS  
dc.subject
NEURAL NETWORK  
dc.subject
PRECISION IRRIGATION  
dc.subject
SOIL MOISTURE MODEL  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Neural compensator for PI soil moisture control  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-19T10:20:22Z  
dc.journal.volume
35  
dc.journal.number
26  
dc.journal.pagination
19131-19144  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Gomez, Juan Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Capraro Fuentes, Flavio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
Neural Computing And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00521-023-08723-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00521-023-08723-6