Mostrar el registro sencillo del ítem
dc.contributor.author
Gomez, Juan Abel
dc.contributor.author
Rossomando, Francisco Guido
dc.contributor.author
Capraro Fuentes, Flavio Andres
dc.contributor.author
Soria, Carlos Miguel
dc.date.available
2024-02-21T14:49:59Z
dc.date.issued
2023-06
dc.identifier.citation
Gomez, Juan Abel; Rossomando, Francisco Guido; Capraro Fuentes, Flavio Andres; Soria, Carlos Miguel; Neural compensator for PI soil moisture control; Springer; Neural Computing And Applications; 35; 26; 6-2023; 19131-19144
dc.identifier.issn
0941-0643
dc.identifier.uri
http://hdl.handle.net/11336/227838
dc.description.abstract
The spatial and temporal variability of a cultivated soil, with technified irrigation systems, requires adaptive control systems to the varying conditions of the water–soil–crop intersystem. Therefore, an adaptive control based on a Radial Basis Function Neural Network (RBF-NN) is proposed in this paper. A static Proportional-Integral (PI) controller was tuned without modifying its parameters by adding a compensation based on RBF-NNs. In this way, the dynamic variation is approximated in real time by means of a RBF-NN. The controller is tested in simulation from a model of water distribution in the soil with extraction by a crop. The results obtained with this method are compared with a traditional Proportional-Integral-Derivative (PID) controller. The comparisons are made taking into account compromise between the amount of water applied and irrigation frequency to keep soil moisture values within the allowed limits. Water savings of 20% and a reduced valve activations 2 times less than the traditional PID were achieved. Finally, the behavior of the controller in the event of disturbances was evaluated, verifying the rejection it produces in the face of these eventualities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONTROL SYSTEMS
dc.subject
NEURAL NETWORK
dc.subject
PRECISION IRRIGATION
dc.subject
SOIL MOISTURE MODEL
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Neural compensator for PI soil moisture control
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-19T10:20:22Z
dc.journal.volume
35
dc.journal.number
26
dc.journal.pagination
19131-19144
dc.journal.pais
Alemania
dc.description.fil
Fil: Gomez, Juan Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Capraro Fuentes, Flavio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.journal.title
Neural Computing And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00521-023-08723-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00521-023-08723-6
Archivos asociados