Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Neural compensator for PI soil moisture control

Gomez, Juan AbelIcon ; Rossomando, Francisco GuidoIcon ; Capraro Fuentes, Flavio AndresIcon ; Soria, Carlos MiguelIcon
Fecha de publicación: 06/2023
Editorial: Springer
Revista: Neural Computing And Applications
ISSN: 0941-0643
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

The spatial and temporal variability of a cultivated soil, with technified irrigation systems, requires adaptive control systems to the varying conditions of the water–soil–crop intersystem. Therefore, an adaptive control based on a Radial Basis Function Neural Network (RBF-NN) is proposed in this paper. A static Proportional-Integral (PI) controller was tuned without modifying its parameters by adding a compensation based on RBF-NNs. In this way, the dynamic variation is approximated in real time by means of a RBF-NN. The controller is tested in simulation from a model of water distribution in the soil with extraction by a crop. The results obtained with this method are compared with a traditional Proportional-Integral-Derivative (PID) controller. The comparisons are made taking into account compromise between the amount of water applied and irrigation frequency to keep soil moisture values within the allowed limits. Water savings of 20% and a reduced valve activations 2 times less than the traditional PID were achieved. Finally, the behavior of the controller in the event of disturbances was evaluated, verifying the rejection it produces in the face of these eventualities.
Palabras clave: CONTROL SYSTEMS , NEURAL NETWORK , PRECISION IRRIGATION , SOIL MOISTURE MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 658.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227838
URL: https://link.springer.com/10.1007/s00521-023-08723-6
DOI: http://dx.doi.org/10.1007/s00521-023-08723-6
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gomez, Juan Abel; Rossomando, Francisco Guido; Capraro Fuentes, Flavio Andres; Soria, Carlos Miguel; Neural compensator for PI soil moisture control; Springer; Neural Computing And Applications; 35; 26; 6-2023; 19131-19144
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES