Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment

Pulido, Manuel ArturoIcon ; Scheffler, Guillermo FedericoIcon ; Ruiz, Juan JoseIcon ; Lucini, Maria MagdalenaIcon ; Tandeo, Pierre
Fecha de publicación: 02/10/2016
Editorial: Wiley
Revista: Quarterly Journal of the Royal Meteorological Society
ISSN: 0035-9009
e-ISSN: 1477-870X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

Oceanic and atmospheric global numerical models represent explicitly the large‐scale dynamics while the smaller‐scale processes are not resolved, so that their effects in the large‐scale dynamics are included through subgrid‐scale parametrizations. These parametrizations represent small‐scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid‐scale parametrizations but also to uncover the functional dependencies of subgrid‐scale processes as a function of large‐scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two‐scale Lorenz '96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large‐scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large‐scale variables and by a space‐dependent model error term. Then a polynomial regression is used to fit the estimated model error as a function of the large‐scale model variables in order to develop a parametrization of small‐scale dynamics. The online estimation shows a good performance when the parameter‐state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid‐scale processes. The nonlinear and non‐local dependence found in an experiment with shear‐generated small‐scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid‐scale parametrizations.
Palabras clave: Enkf , Parameter Estimation , Subgrid-Scale Schemes , Lorenz’96 System , Parametrization
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.793Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/22761
URL: http://onlinelibrary.wiley.com/doi/10.1002/qj.2879/abstract
DOI: http://dx.doi.org/10.1002/qj.2879
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Pulido, Manuel Arturo; Scheffler, Guillermo Federico; Ruiz, Juan Jose; Lucini, Maria Magdalena; Tandeo, Pierre; Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment; Wiley; Quarterly Journal of the Royal Meteorological Society; 142; 701; 2-10-2016; 2974-2984
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES