Mostrar el registro sencillo del ítem
dc.contributor.author
Amore, Paolo
dc.contributor.author
Fernández, Francisco Marcelo
dc.contributor.author
Valdez, José Luis
dc.date.available
2024-02-15T11:03:43Z
dc.date.issued
2023-10
dc.identifier.citation
Amore, Paolo; Fernández, Francisco Marcelo; Valdez, José Luis; Quantum particles in a suddenly accelerating potential; American Institute of Physics; Journal of Mathematical Physics; 64; 10; 10-2023; 1-22
dc.identifier.issn
0022-2488
dc.identifier.uri
http://hdl.handle.net/11336/226946
dc.description.abstract
We study the behavior of a quantum particle trapped in a confining potential in one dimension under multiple sudden changes of velocity and/or acceleration. We develop the appropriate formalism to deal with such situation and we use it to calculate the probability of transition for simple problems such as the particle in an infinite box and the simple harmonic oscillator. For the infinite box of length L under two and three sudden changes of velocity, where the initial and final velocity vanish, we find that the system undergoes quantum revivals for Δ t = τ 0 ≡ 4 m L 2 π ℏ , regardless of other parameters (Δt is the time elapsed between the first and last change of velocity). For the simple harmonic oscillator we find that the states obtained by suddenly changing (one change) the velocity and/or the acceleration of the potential, for a particle initially in an eigenstate of the static potential, are coherent states. For multiple changes of acceleration or velocity we find that the quantum expectation value of the Hamiltonian is remarkably close (possibly identical) to the corresponding classical expectation values. Finally, the probability of transition for a particle in an accelerating harmonic oscillator (no sudden changes) calculated with our formalism agrees with the formula derived long time ago by Ludwig [Z. Phys. 130(4), 468-475 (1951)], and recently modified by Dodonov [J. Russ. Laser Res. 42(3), 243-249 (2021)], but with a different expression for the dimensionless parameter γ. Our probability agrees with the one of Dodonov for γ ≪ 1 but is not periodic in time (it decays monotonously), contrary to the result derived by Dodonov.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ACCELERATING POTENTIAL
dc.subject
PARTICLE IN A POTENTIAL
dc.subject
TIME-DEPENDENT
dc.subject
SCHRÖDINGER EQUATION
dc.subject.classification
Física Atómica, Molecular y Química
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quantum particles in a suddenly accelerating potential
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-14T12:34:30Z
dc.journal.volume
64
dc.journal.number
10
dc.journal.pagination
1-22
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Amore, Paolo. Universidad de Colima; México
dc.description.fil
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Valdez, José Luis. Universidad de Colima; México
dc.journal.title
Journal of Mathematical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0100605
Archivos asociados