Mostrar el registro sencillo del ítem
dc.contributor.author
Rey, Andrea Alejandra
dc.contributor.author
Frery, A. C.
dc.contributor.author
Gambini, J.
dc.contributor.author
Lucini, María Magdalena
dc.date.available
2024-01-23T13:27:33Z
dc.date.issued
2023-11
dc.identifier.citation
Rey, Andrea Alejandra; Frery, A. C.; Gambini, J.; Lucini, María Magdalena; The asymptotic distribution of the permutation entropy; American Institute of Physics; Chaos; 33; 11; 11-2023; 1-25
dc.identifier.issn
1054-1500
dc.identifier.uri
http://hdl.handle.net/11336/224578
dc.description.abstract
Ordinal patterns serve as a robust symbolic transformation technique, enabling the unveiling of latent dynamics within time series data. This methodology involves constructing histograms of patterns, followed by the calculation of both entropy and statistical complexity—an avenue yet to be fully understood in terms of its statistical properties. While asymptotic results can be derived by assuming a multinomial distribution for histogram proportions, the challenge emerges from the non-independence present in the sequence of ordinal patterns. Consequently, the direct application of the multinomial assumption is questionable. This study focuses on the computation of the asymptotic distribution of permutation entropy, considering the inherent patterns’ correlation structure. Furthermore, the research delves into a comparative analysis, pitting this distribution against the entropy derived from a multinomial law. We present simulation algorithms for sampling time series with prescribed histograms of patterns and transition probabilities between them. Through this analysis, we better understand the intricacies of ordinal patterns and their statistical attributes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ENTROPY
dc.subject
PROBABILITY THEORY
dc.subject
COVARIANCE AND CORRELATION
dc.subject
STATISTICAL ANALYSIS
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The asymptotic distribution of the permutation entropy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-22T12:45:37Z
dc.journal.volume
33
dc.journal.number
11
dc.journal.pagination
1-25
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Rey, Andrea Alejandra. Secretaria de Investigacion ; Universidad Nacional de Hurlingham; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Frery, A. C.. Victoria University Of Wellington; Nueva Zelanda
dc.description.fil
Fil: Gambini, J.. Universidad Nacional de Hurlingham.; Argentina
dc.description.fil
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
dc.journal.title
Chaos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cha/article/33/11/113108/2919291/The-asymptotic-distribution-of-the-permutation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0171508
Archivos asociados