Mostrar el registro sencillo del ítem

dc.contributor.author
Dondo, Rodolfo Gabriel  
dc.contributor.author
Mendez, Carlos Alberto  
dc.contributor.author
Cerda, Jaime  
dc.date.available
2017-08-14T19:57:19Z  
dc.date.issued
2009-12  
dc.identifier.citation
Dondo, Rodolfo Gabriel; Mendez, Carlos Alberto; Cerda, Jaime; Managing Distribution in Supply Chain Networks; American Chemical Society; Industrial & Engineering Chemical Research; 48; 22; 12-2009; 9961-9978  
dc.identifier.issn
0888-5885  
dc.identifier.uri
http://hdl.handle.net/11336/22347  
dc.description.abstract
This paper presents a novel optimization approach to the short-term operational planning of multiechelon multiproduct transportation networks. Distribution activities commonly arising in real-world chemical supply chains involve the shipping of a number of commodities from factories to customers directly and/or via distribution centers and regional warehouses. To optimally manage such complex distribution systems, a more general vehicle routing problem in supply chain management (VRP-SCM) has been defined. The new VRP-SCM problem better resembles the logistics activities to be planned at multisite manufacturing firms by allowing multiple events at every location. In this way, two or more vehicles can visit a given location to perform pickup and/or delivery operations, and vehicle routes may include several stops at the same site, i.e., multiple tours per route. More important, the allocation of customers to suppliers and the quantities of products shipped from each source to a particular client are additional model decisions. Both the capacitated vehicle routing problem (VRP) and the pickup-and-delivery problem (PDP) can be regarded as particular instances of the new VRP-SCM. The proposed MILP mathematical formulation for the VRP-SCM problem relies on a continuous-time representation and applies the general precedence notion to model the sequencing constraints establishing the ordering of vehicle stops on every route. The approach provides a very detailed set of optimal vehicle routes and schedules to meet all product demands at minimum total transportation cost. Several examples involving up to 26 locations, four products, and six vehicles housed in four different depots have been solved to optimality in very short CPU times.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Supply Chain Networks  
dc.subject
Distribution Operations  
dc.subject
Vehicle Routing Problems  
dc.subject
Routing And Scheduling  
dc.subject
Mathematical Model  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Managing Distribution in Supply Chain Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-28T15:14:58Z  
dc.journal.volume
48  
dc.journal.number
22  
dc.journal.pagination
9961-9978  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Industrial & Engineering Chemical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie900792s  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ie900792s