Artículo
A scalable offline AI-based solution to assist the diseases and plague detection in agriculture
Urbieta, Mario Matías
; Urbieta, Martin Cesar
; Pereyra, Mauro; Laborde, Tomas; Villarreal, Guillermo; Delpino, Mariana
Fecha de publicación:
06/2023
Editorial:
Taylor & Francis Ltd
Revista:
Journal of Decision Systems
ISSN:
1246-0125
e-ISSN:
2116-7052
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Early detection of diseases and pests is a key factor in eradicating or minimizing the damage that {these} may cause.In this work, a comprehensive solution is presented that is based on the compositing of existing cloud solutions and mobile tools to detect in-situ issues.The platform presented was used for the detection of powdery mildew and Cladosporium diseases in tomatoes.The results of using the approach to carry out this task were more than satisfactory since it managed to correctly detect the symptoms, having mAP of 0.41 in at least some of these symptoms. We analyzed the performance of our dataset on the one hand and the combination of PlantDoc dataset on the other hand. This shows that the platform can be used in the agriculture sector, as an additional tool for detecting diseases and pests in order to combat the problem and reduce its consequences.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Urbieta, Mario Matías; Urbieta, Martin Cesar; Pereyra, Mauro; Laborde, Tomas; Villarreal, Guillermo; et al.; A scalable offline AI-based solution to assist the diseases and plague detection in agriculture; Taylor & Francis Ltd; Journal of Decision Systems; 6-2023; 1-18
Compartir
Altmétricas