Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic offline annotation of turn-taking transitions in task-oriented dialogue

Brusco, PabloIcon ; Gravano, AgustinIcon
Fecha de publicación: 03/2023
Editorial: Academic Press Ltd - Elsevier Science Ltd
Revista: Computer Speech And Language
ISSN: 0885-2308
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

As the volume of recorded conversations continues to surge, so does the need for their automatic processing. Plenty of information beyond words may be extracted from the speech signal that could be valuable in domains such as call-center quality assurance. In particular, describing the dynamics of turn-taking exchanges allows for a deeper understanding of the development and outcome of a dialogue. In this paper, we investigate the construction of an automatic turn-taking annotation tool based on recordings of entire conversations (in offline mode) — an unexplored topic to our knowledge. We experiment with two supervised learning approaches, using recurrent neural networks and random forests, on a corpus of Argentine Spanish task-oriented dialogues annotated with 12 turn-taking categories following standard guidelines. Our models achieve promising results, with F1 scores ranging 0.7–0.9 for the most frequent labels (e.g., smooth switches, backchannels), but much lower for the least frequent ones (various kinds of interruptions), for which further research is needed. We also evaluate our best-performing models considering their generalizability in scenarios of growing difficulty, including dialogues in two different languages (English and Slovak). Finally, to address the typical data scarcity issue, we analyze the impact of combining training data from different corpora, again including cross-linguistic data.
Palabras clave: DIALOGUE , MACHINE LEARNING , OFFLINE AUDIO PROCESSING , TURN-TAKING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.066Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/219622
URL: https://www.sciencedirect.com/science/article/abs/pii/S0885230822000857
DOI: http://dx.doi.org/10.1016/j.csl.2022.101462
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Brusco, Pablo; Gravano, Agustin; Automatic offline annotation of turn-taking transitions in task-oriented dialogue; Academic Press Ltd - Elsevier Science Ltd; Computer Speech And Language; 78; 3-2023; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES