Artículo
Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation
Miccio, Luis Alejandro
; Borredon, Claudia; Casado, Ulises Martín
; Phan, Anh D.; Schwartz, Gustavo Ariel
Fecha de publicación:
04/2022
Editorial:
Multidisciplinary Digital Publishing Institute
Revista:
Polymers
ISSN:
2073-4360
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time‐consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer.
Palabras clave:
ARTIFICIAL NEURAL NETWORKS
,
DYNAMICS PREDICTION
,
POLYMERS
,
QSPR
,
SMART DESIGN
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Miccio, Luis Alejandro; Borredon, Claudia; Casado, Ulises Martín; Phan, Anh D.; Schwartz, Gustavo Ariel; Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation; Multidisciplinary Digital Publishing Institute; Polymers; 14; 8; 4-2022; 1-12
Compartir
Altmétricas