Mostrar el registro sencillo del ítem
dc.contributor.author
Zhang, Jie
dc.contributor.author
Sun, Zhe
dc.contributor.author
Duan, Feng
dc.contributor.author
Shi, Liang
dc.contributor.author
Zhang, Yu
dc.contributor.author
Solé Casals, Jordi
dc.contributor.author
Caiafa, César Federico
dc.date.available
2023-10-04T09:37:37Z
dc.date.issued
2022-07
dc.identifier.citation
Zhang, Jie; Sun, Zhe; Duan, Feng; Shi, Liang; Zhang, Yu; et al.; Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 43; 17; 7-2022; 5220-5234
dc.identifier.issn
1065-9471
dc.identifier.uri
http://hdl.handle.net/11336/214006
dc.description.abstract
Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1–3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4–6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley-liss, div John Wiley & Sons Inc.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
CORTICAL LAYERS
dc.subject
DIFFUSION MAGNETIC RESONANCE IMAGING
dc.subject
IN VIVO
dc.subject
LAMINAR CONNECTIONS
dc.subject
NONINVASIVE
dc.subject
WORKING MEMORY
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-09-25T14:52:44Z
dc.journal.volume
43
dc.journal.number
17
dc.journal.pagination
5220-5234
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Zhang, Jie. Nankai University; China
dc.description.fil
Fil: Sun, Zhe. No especifíca;
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Shi, Liang. Nankai University; China
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos
dc.description.fil
Fil: Solé Casals, Jordi. Nankai University; China
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.journal.title
Human Brain Mapping
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/hbm.25998
Archivos asociados