Artículo
Learning by mistakes in memristor networks
Fecha de publicación:
05/2022
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
1539-3755
e-ISSN:
2470-0053
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recent results revived the interest in the implementation of analog devices able to perform brainlike operations. Here we introduce a training algorithm for a memristor network which is inspired by previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation overhead.
Palabras clave:
MEMRISTOR
,
NETWORKS
,
NEUROMORPHING
,
NEURAL NETWORKS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Carbajal, Juan Pablo; Mártin, Daniel Alejandro; Chialvo, Dante Renato; Learning by mistakes in memristor networks; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 105; 5; 5-2022; 1-10
Compartir
Altmétricas