Artículo
Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
Zhong, Qing; Busetto, Alberto Giovanni; Fededa, Juan Pablo
; Buhmann, Joachim M.; Gerlich, Daniel W.
Fecha de publicación:
05/2012
Editorial:
Nature Publishing Group
Revista:
Nature Methods
ISSN:
1548-7091
e-ISSN:
1548-7105
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Analysis of cellular phenotypes in large imaging data sets conventionally involves supervised statistical methods, which require user-annotated training data. This paper introduces an unsupervised learning method, based on temporally constrained combinatorial clustering, for automatic prediction of cell morphology classes in time-resolved images. We applied the unsupervised method to diverse fluorescent markers and screening data and validated accurate classification of human cell phenotypes, demonstrating fully objective data labeling in image-based systems biology.
Palabras clave:
Unsupervised Modeling
,
Time-Lapse Microscopy
,
Cell Morphology Dynamics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBYNE)
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Citación
Zhong, Qing; Busetto, Alberto Giovanni; Fededa, Juan Pablo; Buhmann, Joachim M.; Gerlich, Daniel W.; Unsupervised modeling of cell morphology dynamics for time-lapse microscopy; Nature Publishing Group; Nature Methods; 9; 7; 5-2012; 711-713
Compartir
Altmétricas