Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An Empirical Study on How Sapienz Achieves Coverage and Crash Detection

Arcuschin, Iván; Galeotti, Juan PabloIcon ; Garbervetsky, Diego DavidIcon
Fecha de publicación: 04/2023
Editorial: John Wiley & Sons
Revista: Journal of Software: Evolution and Process
ISSN: 2047-7481
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Several tools for automatically testing Android applications have been proposed. In particular, Sapienz is a search-based tool that has been recently deployed in an industrial setting. Although it has been shown that Sapienz outperforms several state-of-the-art tools, it is still to be seen what features of SAPIENZ impact the most on its effectiveness. We conducted an extensive empirical study where we compare the impact of the search algorithm and the usage of motif genes, a more compact representation of individuals. Our empirical study shows that the usage of motif genes improves coverage both for Evolutionary Algorithms and random approaches. In particular, it also shows that NSGA-II, the multi-objective evolutionary algorithm used by Sapienz, does not have a clear improvement over other algorithms. In terms of number of crashes detected, our study shows that both NSGA-II and Random Search perform similarly. While the usage of motif genes improves the crash detection of algorithms, it is not enough to make it statistically significant. These facts cast doubts about the use of Evolutionary Algorithms in the context of Android test generation and suggest that motif genes can have a great impact on the overall effectiveness.
Palabras clave: ANDROID , EMPIRICAL STUDY , EVOLUTIONARY ALGORITHMS , RANDOM SEARCH , SAPIENZ , TEST GENERATION
Ver el registro completo
 
Archivos asociados
Tamaño: 3.874Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/204740
URL: https://onlinelibrary.wiley.com/doi/10.1002/smr.2411
DOI: http://dx.doi.org/10.1002/smr.2411
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Arcuschin, Iván; Galeotti, Juan Pablo; Garbervetsky, Diego David; An Empirical Study on How Sapienz Achieves Coverage and Crash Detection; John Wiley & Sons; Journal of Software: Evolution and Process; 35; 4; 4-2023; 1-24
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES