Mostrar el registro sencillo del ítem

dc.contributor.author
Weiss, Shennan A  
dc.contributor.author
Pastore, Tomas  
dc.contributor.author
Orosz, Iren  
dc.contributor.author
Rubinstein, Daniel  
dc.contributor.author
Gorniak, Richard  
dc.contributor.author
Waldman, Zachary  
dc.contributor.author
Fried, Itzhak  
dc.contributor.author
Wu, Chengyuan  
dc.contributor.author
Sharan, Ashwini  
dc.contributor.author
Fernandez Slezak, Diego  
dc.contributor.author
Worrell, Gregory  
dc.contributor.author
Engel, Jerome  
dc.contributor.author
Sperling, Michael R  
dc.contributor.author
Staba, Richard J  
dc.date.available
2023-07-20T14:34:31Z  
dc.date.issued
2022-04  
dc.identifier.citation
Weiss, Shennan A; Pastore, Tomas; Orosz, Iren; Rubinstein, Daniel; Gorniak, Richard; et al.; Graph theoretical measures of fast ripples support the epileptic network hypothesis; Oxford University Press; Brain Communications; 4; 3; 4-2022; 1-19  
dc.identifier.issn
2632-1297  
dc.identifier.uri
http://hdl.handle.net/11336/204654  
dc.description.abstract
The epileptic network hypothesis and epileptogenic zone hypothesis are two theories of ictogenesis. The network hypothesis posits that coordinated activity among interconnected nodes produces seizures. The epileptogenic zone hypothesis posits that distinct regions are necessary and sufficient for seizure generation. High-frequency oscillations, and particularly fast ripples, are thought to be biomarkers of the epileptogenic zone. We sought to test these theories by comparing high-frequency oscillation rates and networks in surgical responders and non-responders, with no appreciable change in seizure frequency or severity, within a retrospective cohort of 48 patients implanted with stereo-EEG electrodes. We recorded inter-ictal activity during non-rapid eye movement sleep and semi-Automatically detected and quantified high-frequency oscillations. Each electrode contact was localized in normalized coordinates. We found that the accuracy of seizure onset zone electrode contact classification using high-frequency oscillation rates was not significantly different in surgical responders and non-responders, suggesting that in non-responders the epileptogenic zone partially encompassed the seizure onset zone(s) (P > 0.05). We also found that in the responders, fast ripple on oscillations exhibited a higher spectral content in the seizure onset zone compared with the non-seizure onset zone (P < 1 × 10-5). By contrast, in the non-responders, fast ripple had a lower spectral content in the seizure onset zone (P < 1 × 10-5). We constructed two different networks of fast ripple with a spectral content >350aHz. The first was a rate-distance network that multiplied the Euclidian distance between fast ripple-generating contacts by the average rate of fast ripple in the two contacts. The radius of the rate-distance network, which excluded seizure onset zone nodes, discriminated non-responders, including patients not offered resection or responsive neurostimulation due to diffuse multifocal onsets, with an accuracy of 0.77 [95% confidence interval (CI) 0.56-0.98]. The second fast ripple network was constructed using the mutual information between the timing of the events to measure functional connectivity. For most non-responders, this network had a longer characteristic path length, lower mean local efficiency in the non-seizure onset zone, and a higher nodal strength among non-seizure onset zone nodes relative to seizure onset zone nodes. The graphical theoretical measures from the rate-distance and mutual information networks of 22 non-responsive neurostimulation treated patients was used to train a support vector machine, which when tested on 13 distinct patients classified non-responders with an accuracy of 0.92 (95% CI 0.75-1). These results indicate patients who do not respond to surgery or those not selected for resection or responsive neurostimulation can be explained by the epileptic network hypothesis that is a decentralized network consisting of widely distributed, hyperexcitable fast ripple-generating nodes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BRAIN NETWORK  
dc.subject
EPILEPSY SURGERY  
dc.subject
FAST RIPPLE  
dc.subject
HIGH-FREQUENCY OSCILLATION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Graph theoretical measures of fast ripples support the epileptic network hypothesis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:19:15Z  
dc.journal.volume
4  
dc.journal.number
3  
dc.journal.pagination
1-19  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Weiss, Shennan A. State University of New York; Estados Unidos. New York City Health + Hospitals; Estados Unidos  
dc.description.fil
Fil: Pastore, Tomas. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Orosz, Iren. University of California at Los Angeles. School of Medicine; Estados Unidos  
dc.description.fil
Fil: Rubinstein, Daniel. Thomas Jefferson University; Estados Unidos  
dc.description.fil
Fil: Gorniak, Richard. Thomas Jefferson University; Estados Unidos  
dc.description.fil
Fil: Waldman, Zachary. Thomas Jefferson University; Estados Unidos  
dc.description.fil
Fil: Fried, Itzhak. University of California at Los Angeles. School of Medicine; Estados Unidos  
dc.description.fil
Fil: Wu, Chengyuan. Thomas Jefferson University; Estados Unidos  
dc.description.fil
Fil: Sharan, Ashwini. Thomas Jefferson University; Estados Unidos  
dc.description.fil
Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Worrell, Gregory. Mayo Clinic; Estados Unidos  
dc.description.fil
Fil: Engel, Jerome. Mayo Clinic; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados Unidos  
dc.description.fil
Fil: Sperling, Michael R. Thomas Jefferson University; Estados Unidos  
dc.description.fil
Fil: Staba, Richard J. University of California at Los Angeles. School of Medicine; Estados Unidos  
dc.journal.title
Brain Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/braincomms/fcac101  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/braincomms/article/4/3/fcac101/6568952