Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review

Ruiz, Juan JoseIcon ; Pulido, Manuel ArturoIcon ; Miyoshi, Takemasa
Fecha de publicación: 06/2013
Editorial: Meteorological Soc Jpn
Revista: Journal Of The Meteorological Society Of Japan
ISSN: 0026-1165
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

In this work, various methods for the estimation of the parameter uncertainty and the covariance between the parameters and the state variables are investigated using the local ensemble transform Kalman filter (LETKF). Two methods are compared for the estimation of the covariances between the state variables and the parameters: one using a single ensemble for the simultaneous estimation of model state and parameters, and the other using two separate ensembles; for the initial conditions and for the parameters. It is found that the method which uses two ensembles produces a more accurate representation of the covariances between observed variables and parameters, although this does not produce an improvement of the parameter or state estimation. The experiments show that the former method with a single ensemble is more efficient and produces results as accurate as the ones obtained with the two separate ensembles method. The impact of parameter ensemble spread upon the parameter estimation and its associated analysis is also investigated. A new approach to the optimization of the estimated parameter ensemble spread (EPES) is proposed in this work. This approach preserves the structure of the analysis error covariance matrix of the augmented state vector. Results indicate that the new approach determines the value of the parameter ensemble spread that produces the lowest errors in the analysis and in the estimated parameters. A simple low-resolution atmospheric general circulation model known as SPEEDY is used for the evaluation of the different parameter estimation techniques.
Palabras clave: DATA ASSIMILATION , ENSEMBLE KALMAN FILTER , ERROR COVARIANCE , PARAMETER ESTIMATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 761.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/2027
URL: https://www.jstage.jst.go.jp/article/jmsj/91/2/91_2013-201/_article
DOI: http://dx.doi.org/10.2151/jmsj.2013-403
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 4; 6-2013; 453-469
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES