Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multiscale modelling in nuclear ferritic steels: from nano-sized defects to embrittlement

Castin, N.; Bonny, G.; Konstantinovic, M. J.; Bakaev, A.; Bergner, F.; Courilleau, C.; Domain, C.; Gómez Ferrer, B.; Hyde, J. M.; Messina, L.; Monnet, G.; Pascuet, Maria Ines MagdalenaIcon ; Radiguet, B.; Serrano, M.; Malerba, L.
Fecha de publicación: 10/2022
Editorial: Elsevier
Revista: Materials Today Physics
ISSN: 2542-5293
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Radiation-induced embrittlement of nuclear steels is one of the main limiting factors for safe long-term operation of nuclear power plants. In support of accurate and safe reactor pressure vessel (RPV) lifetime assessments, we developed a physics-based model that predicts RPV steel hardening and subsequent embrittlement as a consequence of the formation of nano-sized clusters of minor alloying elements. This model is shown to provide reliable assessments of embrittlement for a very wide range of materials, with higher accuracy than industrial correlations. The core of our model is a multiscale modelling tool that predicts the kinetics of solute clustering, given the steel chemical composition and its irradiation conditions. It is based on the observation that the formation of solute clusters ensues from atomic transport driven by radiation-induced mechanisms, differently from classical nucleation-and-growth theories. We then show that the predicted information about solute clustering can be translated into a reliable estimate for radiation-induced embrittlement, via standard hardening laws based on the dispersed barrier model. We demonstrate the validity of our approach by applying it to hundreds of nuclear reactors vessels from all over the world.
Palabras clave: Multiscale Modelling , Nuclear ferritic steels , Embrittlement
Ver el registro completo
 
Archivos asociados
Tamaño: 6.194Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/201217
URL: https://linkinghub.elsevier.com/retrieve/pii/S2542529322002000
DOI: http://dx.doi.org/10.1016/j.mtphys.2022.100802
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Castin, N.; Bonny, G.; Konstantinovic, M. J.; Bakaev, A.; Bergner, F.; et al.; Multiscale modelling in nuclear ferritic steels: from nano-sized defects to embrittlement; Elsevier; Materials Today Physics; 27; 10-2022; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES