Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detecting Ongoing Events Using Contextual Word and Sentence Embeddings

Maisonnave, MarianoIcon ; Delbianco, Fernando AndrésIcon ; Tohmé, Fernando AbelIcon ; Maguitman, Ana GabrielaIcon ; Milios, Evangelos, E.
Fecha de publicación: 15/12/2022
Editorial: Elsevier Science
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

This paper introduces the Ongoing Event Detection (OED) task, which is a specific Event Detection task where the goal is to detect ongoing event mentions only, as opposed to historical, future, hypothetical, or other forms or events that are neither fresh nor current. Any application that needs to extract structured information about ongoing events from unstructured texts can take advantage of an OED system. The main contribution of this paper are the following: (1) it introduces the OED task along with a dataset manually labeled for the task; (2) it presents the design and implementation of an RNN model for the task that uses BERT embeddings to define contextual word and contextual sentence embeddings as attributes, which to the best of our knowledge were never used before for detecting ongoing events in news; (3) it presents an extensive empirical evaluation that includes (i) the exploration of different architectures and hyperparameters, (ii) an ablation test to study the impact of each attribute, and (iii) a comparison with a replication of a state-of-the-art model. The results offer several insights into the importance of contextual embeddings and indicate that the proposed approach is effective in the OED task, outperforming the baseline models.
Palabras clave: Ongoing Event Detection , Information Extraction , Contextual Embedding , BERT , CNN
Ver el registro completo
 
Archivos asociados
Tamaño: 1.646Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/196767
URL: https://doi.org/10.1016/j.eswa.2022.118257
URL: https://www.sciencedirect.com/science/article/pii/S0957417422013975?via%3Dihub
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Maisonnave, Mariano; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; Milios, Evangelos, E.; Detecting Ongoing Events Using Contextual Word and Sentence Embeddings; Elsevier Science; Expert Systems with Applications; 209; 15-12-2022; 1-13; 118257
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES