Mostrar el registro sencillo del ítem
dc.contributor.author
Salto, Carolina
dc.contributor.author
Alba, Enrique
dc.date.available
2023-05-05T12:36:42Z
dc.date.issued
2012-04
dc.identifier.citation
Salto, Carolina; Alba, Enrique; Designing heterogeneous distributed GAs by efficiently self-adapting the migration period; Springer; Applied Intelligence; 36; 4; 4-2012; 800-808
dc.identifier.issn
0924-669X
dc.identifier.uri
http://hdl.handle.net/11336/196393
dc.description.abstract
This paper investigates a new heterogeneous method that dynamically sets the migration period of a distributed Genetic Algorithm (dGA). Each island GA of this multipopulation technique self-adapts the period for exchanging information with the other islands regarding the local evolution process. Thus, the different islands can develop different migration settings behaving like a heterogeneous dGA. The proposed algorithm is tested on a large set of instances of the Max-Cut problem, and it can be easily applied to other optimization problems. The results of this heterogeneous dGA are competitive with the best existing algorithms, with the added advantage of avoiding time-consuming preliminary tests for tuning the algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DISTRIBUTED GAS
dc.subject
HETEROGENEITY
dc.subject
MIGRATION PERIOD
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Designing heterogeneous distributed GAs by efficiently self-adapting the migration period
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-03-29T17:20:02Z
dc.journal.volume
36
dc.journal.number
4
dc.journal.pagination
800-808
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Salto, Carolina. Universidad Nacional de La Pampa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
dc.description.fil
Fil: Alba, Enrique. Universidad de Málaga; España
dc.journal.title
Applied Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10489-011-0297-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10489-011-0297-9
Archivos asociados