Artículo
Designing heterogeneous distributed GAs by efficiently self-adapting the migration period
Fecha de publicación:
04/2012
Editorial:
Springer
Revista:
Applied Intelligence
ISSN:
0924-669X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper investigates a new heterogeneous method that dynamically sets the migration period of a distributed Genetic Algorithm (dGA). Each island GA of this multipopulation technique self-adapts the period for exchanging information with the other islands regarding the local evolution process. Thus, the different islands can develop different migration settings behaving like a heterogeneous dGA. The proposed algorithm is tested on a large set of instances of the Max-Cut problem, and it can be easily applied to other optimization problems. The results of this heterogeneous dGA are competitive with the best existing algorithms, with the added advantage of avoiding time-consuming preliminary tests for tuning the algorithm.
Palabras clave:
DISTRIBUTED GAS
,
HETEROGENEITY
,
MIGRATION PERIOD
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA CONFLUENCIA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA CONFLUENCIA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA CONFLUENCIA
Citación
Salto, Carolina; Alba, Enrique; Designing heterogeneous distributed GAs by efficiently self-adapting the migration period; Springer; Applied Intelligence; 36; 4; 4-2012; 800-808
Compartir
Altmétricas