Artículo
Strong and weak constraint variational assimilations for reduced order fluid flow modeling
Fecha de publicación:
04/2012
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Computational Physics
ISSN:
0021-9991
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we propose and evaluate two variational data assimilation techniques for the estimation of low order surrogate experimental dynamical models for fluid flows. Both methods are built from optimal control recipes and rely on proper orthogonal decomposition and a Galerkin projection of the Navier Stokes equation. The techniques proposed differ in the control variables they involve. The first one introduces a weak dynamical model defined only up to an additional uncertainty time-dependent function whereas the second one, handles a strong dynamical constraint in which the dynamical system’s coefficients constitute the control variables. Both choices correspond to different approximations of the relation between the reduced basis on which is expressed the motion field and the basis components that have been neglected in the reduced order model construction. The techniques have been assessed on numerical data and for real experimental conditions with noisy particle image velocimetry data.
Palabras clave:
PIV
,
POD
,
REDUCED ORDER DYNAMICAL SYSTEMS
,
VARIATIONAL ASSIMILATION
,
WAKE FLOW
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Artana, Guillermo Osvaldo; Cammilleri, A.; Carlier, J.; Mémin, E.; Strong and weak constraint variational assimilations for reduced order fluid flow modeling; Academic Press Inc Elsevier Science; Journal of Computational Physics; 231; 8; 4-2012; 3264-3288
Compartir
Altmétricas