Mostrar el registro sencillo del ítem
dc.contributor.author
Magalhaes, Juliana G. de S.
dc.contributor.author
Polinko, Adam P.
dc.contributor.author
Amoroso, Mariano Martin
dc.contributor.author
Kohli, Gursimran S.
dc.contributor.author
Larson, Bruce C.
dc.date.available
2023-03-17T10:35:37Z
dc.date.issued
2022-05
dc.identifier.citation
Magalhaes, Juliana G. de S.; Polinko, Adam P.; Amoroso, Mariano Martin; Kohli, Gursimran S.; Larson, Bruce C.; The Predicting Tree Growth App: an algorithmic approach to modelling individual tree growth; Elsevier Science; Ecological Modelling; 467; 109932; 5-2022; 1-5
dc.identifier.issn
0304-3800
dc.identifier.uri
http://hdl.handle.net/11336/190854
dc.description.abstract
PredictingTreeGrowth is free and open-source application software written in Python 3.7 that allows easy and fast development of predictive models using the Recurrent Neural Network (RNN)/Long Short-Term Memory (LSTM) framework. RNNs have an upgraded architecture able to capture tree growth mechanisms related to time ordering and size dependence. The motivation for this App is to demystify the use of Machine Learning algorithms and allow accessibility of Machine Learning algorithms by the scientific community. Its simple graphical user interface (GUI) provides straightforward tools for building predictive models with the RNN algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INDIVIDUAL TREE GROWTH MODELLING
dc.subject
MACHINE LEARNING ALGORITHMS
dc.subject
RECURRENT NEURAL NETWORK
dc.subject
SOFTWARE
dc.subject.classification
Silvicultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
The Predicting Tree Growth App: an algorithmic approach to modelling individual tree growth
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-03-03T17:02:24Z
dc.journal.volume
467
dc.journal.number
109932
dc.journal.pagination
1-5
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Magalhaes, Juliana G. de S.. University of British Columbia; Canadá
dc.description.fil
Fil: Polinko, Adam P.. Mississippi State University.; Estados Unidos
dc.description.fil
Fil: Amoroso, Mariano Martin. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Kohli, Gursimran S.. University Fraser Simon; Canadá
dc.description.fil
Fil: Larson, Bruce C.. University of British Columbia; Canadá
dc.journal.title
Ecological Modelling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ecolmodel.2022.109932
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304380022000552
Archivos asociados