Mostrar el registro sencillo del ítem
dc.contributor.author
Amado, Conceicao
dc.contributor.author
Bianco, Ana Maria
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Pires, Ana M.
dc.date.available
2017-06-23T17:58:07Z
dc.date.issued
2014-06
dc.identifier.citation
Amado, Conceicao; Bianco, Ana Maria; Boente Boente, Graciela Lina; Pires, Ana M.; Robust bootstrap: an alternative to bootstrapping robust estimators; Instituto Nacional de Estatística; Revstat Statistical Journal; 12; 2; 6-2014; 169-197
dc.identifier.issn
1645-6726
dc.identifier.uri
http://hdl.handle.net/11336/18748
dc.description.abstract
There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the convergence to the limiting distribution may be rather slow, so bootstrap methods are preferable since they often give better small sample results. However, resampling methods have several disadvantages including the propagation of anomalous data all along the new samples. In this paper, we discuss the problems arising in the bootstrap when outlying observations are present. We argue that it is preferable to use a robust bootstrap rather than to bootstrap robust estimators and we discuss a robust bootstrap method, the Influence Function Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the univariate location case and in the logistic regression model. We derive some asymptotic properties of the IFB. Finally, we introduce a generalization of the Influence Function Bootstrap in order to improve the IFB behaviour.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Instituto Nacional de Estatística
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Influence Function
dc.subject
Resampling Methods
dc.subject
Robust Inference
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust bootstrap: an alternative to bootstrapping robust estimators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-23T14:10:51Z
dc.journal.volume
12
dc.journal.number
2
dc.journal.pagination
169-197
dc.journal.pais
Portugal
dc.journal.ciudad
Lisboa
dc.description.fil
Fil: Amado, Conceicao. Universidade de Lisboa; Portugal
dc.description.fil
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.description.fil
Fil: Pires, Ana M.. Universidade de Lisboa; Portugal
dc.journal.title
Revstat Statistical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ine.pt/revstat/pdf/rs140205.pdf
Archivos asociados