Mostrar el registro sencillo del ítem

dc.contributor.author
Amado, Conceicao  
dc.contributor.author
Bianco, Ana Maria  
dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Pires, Ana M.  
dc.date.available
2017-06-23T17:58:07Z  
dc.date.issued
2014-06  
dc.identifier.citation
Amado, Conceicao; Bianco, Ana Maria; Boente Boente, Graciela Lina; Pires, Ana M.; Robust bootstrap: an alternative to bootstrapping robust estimators; Instituto Nacional de Estatística; Revstat Statistical Journal; 12; 2; 6-2014; 169-197  
dc.identifier.issn
1645-6726  
dc.identifier.uri
http://hdl.handle.net/11336/18748  
dc.description.abstract
There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the convergence to the limiting distribution may be rather slow, so bootstrap methods are preferable since they often give better small sample results. However, resampling methods have several disadvantages including the propagation of anomalous data all along the new samples. In this paper, we discuss the problems arising in the bootstrap when outlying observations are present. We argue that it is preferable to use a robust bootstrap rather than to bootstrap robust estimators and we discuss a robust bootstrap method, the Influence Function Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the univariate location case and in the logistic regression model. We derive some asymptotic properties of the IFB. Finally, we introduce a generalization of the Influence Function Bootstrap in order to improve the IFB behaviour.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Instituto Nacional de Estatística  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Influence Function  
dc.subject
Resampling Methods  
dc.subject
Robust Inference  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust bootstrap: an alternative to bootstrapping robust estimators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-23T14:10:51Z  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
169-197  
dc.journal.pais
Portugal  
dc.journal.ciudad
Lisboa  
dc.description.fil
Fil: Amado, Conceicao. Universidade de Lisboa; Portugal  
dc.description.fil
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina  
dc.description.fil
Fil: Pires, Ana M.. Universidade de Lisboa; Portugal  
dc.journal.title
Revstat Statistical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ine.pt/revstat/pdf/rs140205.pdf