Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving lodgepole pine genomic evaluation using spatial correlation structure and SNP selection with single-step GBLUP

Cappa, Eduardo PabloIcon ; Ratcliffe, Blaise; Chen, Charles; Thomas, Barb R.; Liu, Yang; Klutsch, Jennifer; Wei, Xiaojing; Azcona, Jaime Sebastian; Benowicz, Andy; Sadoway, Shane; Erbilgin, Nadir; El-Kassaby, Yousry A.
Fecha de publicación: 04/2022
Editorial: Nature Publishing Group
Revista: Heredity
ISSN: 0018-067X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

Modeling environmental spatial heterogeneity can improve the efficiency of forest tree genomic evaluation. Furthermore, genotyping costs can be lowered by reducing the number of markers needed. We investigated the impact on variance components, breeding value accuracy, and bias of two phenotypic data adjustments (experimental design and autoregressive spatial models), and a relationship matrix calculated from a subset of markers selected for their ability to infer ancestry. Using a multiple-trait multiple-site single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) approach, four scenarios (2 phenotype adjustments × 2 marker sets) were applied to diameter at breast height (DBH), height (HT), and resistance to western gall rust (WGR) in four open-pollinated progeny trials of lodgepole pine, with 1490 (out of 11,188) trees genotyped with 25,099 SNPs. As a control, we fitted the conventional ABLUP model using pedigree information. The highest heritability estimates were achieved for the ABLUP followed closely by the ssGBLUP with the full marker set and using the spatial phenotype adjustments. The highest predictive ability was obtained by using a reduced marker subset (8000 SNPs) when either the spatial (DBH: 0.429, and WGR: 0.513) or design (HT: 0.467) phenotype corrections were used. No significant difference was detected in prediction bias among the six fitted models, and all values were close to 1 (0.918–1.014). Results demonstrated that selecting informative markers, such as those capturing ancestry, can improve the predictive ability. The use of spatial correlation structure increased traits’ heritability and reduced prediction bias, while increases in predictive ability were trait-dependent.
Palabras clave: SPATIAL MODEL , SNP ARRAY SUBSET , ssGBLUP , HERITABILITY , ACCURACY , BIAS , LODGEPOLE PINE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.558Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/186939
URL: https://www.nature.com/articles/s41437-022-00508-2
DOI: http://dx.doi.org/10.1038/s41437-022-00508-2
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Cappa, Eduardo Pablo; Ratcliffe, Blaise; Chen, Charles; Thomas, Barb R.; Liu, Yang; et al.; Improving lodgepole pine genomic evaluation using spatial correlation structure and SNP selection with single-step GBLUP; Nature Publishing Group; Heredity; 128; 4; 4-2022; 209-224
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES