Artículo
On the integration of reaction and separation in a batch extractive distillation column with a middle vessel
Fecha de publicación:
07/2002
Editorial:
American Chemical Society
Revista:
Industrial & Engineering Chemical Research
ISSN:
0888-5885
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, the integration of reaction and separation in a batch extractive distillation column with a middle vessel/reactor is analyzed for azeotrope-forming mixtures. This equipment configuration has the potential to promote the complete conversion of reactants; therefore, the main process characteristics are investigated. A mixture showing several azeotropes and involving an esterification reaction was selected as an academic example. The first part of the paper deals with the phase-equilibrium analysis of the mixture. The nodes (pure components and azeotropes) and the distillation regions of the multicomponent mixture are obtained. The analysis of the topology of the residue-curve map is used to select one of the reagents as entrainer. Feasibility of the combined operation is studied based on the phase-equilibrium analysis and the investigation of the feasible cuts at infinite separation power. The second part of the contribution focuses on the different steps of the process. The influence of operating and process parameters on the operation performance is studied with the aid of a process simulator. Physical explanations are given for the results. Results show the advantages of integrating reaction and separation to enhance both reagents conversion and product separation.
Palabras clave:
REACTION
,
SEPARATION
,
SYNERGISTIC EFFECTS
,
MIDDLE VESSEL COLUMN
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Espinosa, Hector Jose Maria; On the integration of reaction and separation in a batch extractive distillation column with a middle vessel; American Chemical Society; Industrial & Engineering Chemical Research; 41; 15; 7-2002; 3657-3668
Compartir
Altmétricas