Mostrar el registro sencillo del ítem

dc.contributor.author
Yagupsky, Daniel Leonardo  
dc.contributor.author
Brooks, Benjamin A.  
dc.contributor.author
Whipple, Kelin X.  
dc.contributor.author
Duncan, Christopher C.  
dc.contributor.author
Bevis, Michael  
dc.date.available
2017-06-19T21:44:38Z  
dc.date.issued
2014-09  
dc.identifier.citation
Yagupsky, Daniel Leonardo; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael; Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue; Elsevier; Journal Of Structural Geology; 66; 9-2014; 237-247  
dc.identifier.issn
0191-8141  
dc.identifier.uri
http://hdl.handle.net/11336/18501  
dc.description.abstract
Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others under balanced conditions would display focused deformation on a limited number of steady structures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Minimum Work  
dc.subject
Orogenic Wedge  
dc.subject
Erosion  
dc.subject
Thrust Activity  
dc.subject
Bolivian Subandes  
dc.subject.classification
Geología  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-19T17:28:26Z  
dc.journal.volume
66  
dc.journal.pagination
237-247  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Yagupsky, Daniel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; Argentina  
dc.description.fil
Fil: Brooks, Benjamin A.. University Of Hawaii At Manoa; Estados Unidos  
dc.description.fil
Fil: Whipple, Kelin X.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Duncan, Christopher C.. University Of Massachussets; Estados Unidos  
dc.description.fil
Fil: Bevis, Michael. Ohio State University; Estados Unidos  
dc.journal.title
Journal Of Structural Geology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jsg.2014.05.025  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0191814114001308