Mostrar el registro sencillo del ítem

dc.contributor.author
Soldera, Marcos Maximiliano  
dc.contributor.author
Alamri, Sabri  
dc.contributor.author
Sürmann, Paul Alexander  
dc.contributor.author
Kunze, Tim  
dc.contributor.author
Lasagni, Andrés Fabián  
dc.date.available
2023-01-09T12:24:07Z  
dc.date.issued
2021-01  
dc.identifier.citation
Soldera, Marcos Maximiliano; Alamri, Sabri; Sürmann, Paul Alexander; Kunze, Tim; Lasagni, Andrés Fabián; Microfabrication and surface functionalization of soda lime glass through direct laser interference patterning; MDPI AG; Nanomaterials; 11; 1; 1-2021; 1-17  
dc.identifier.issn
2079-4991  
dc.identifier.uri
http://hdl.handle.net/11336/183858  
dc.description.abstract
All-purpose glasses are common in many established and emerging industries, such as microelectronics, photovoltaics, optical components, and biomedical devices due to their outstanding combination of mechanical, optical, thermal, and chemical properties. Surface functionalization through nano/micropatterning can further enhance glasses’ surface properties, expanding their applicability into new fields. Although laser structuring methods have been successfully employed on many absorbing materials, the processability of transparent materials with visible laser radiation has not been intensively studied, especially for producing structures smaller than 10 µm. Here, interference-based optical setups are used to directly pattern soda lime substrates through non-lineal absorption with ps-pulsed laser radiation in the visible spectrum. Line-and dot-like patterns are fabricated with spatial periods between 2.3 and 9.0 µm and aspect ratios up to 0.29. Furthermore, laserinduced periodic surface structures (LIPSS) with a feature size of approximately 300 nm are visible within these microstructures. The textured surfaces show significantly modified properties. Namely, the treated surfaces have an increased hydrophilic behavior, even reaching a super-hydrophilic state for some cases. In addition, the micropatterns act as relief diffraction gratings, which split incident light into diffraction modes. The process parameters were optimized to produce high-quality textures with super-hydrophilic properties and diffraction efficiencies above 30%.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI AG  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DIFFRACTION GRATINGS  
dc.subject
DIRECT LASER INTERFERENCE PATTERNING  
dc.subject
GLASS MICRO-STRUCTURING  
dc.subject
LASER-INDUCED PERIODIC SURFACE STRUCTURES  
dc.subject
MULTI-PHOTON ABSORPTION  
dc.subject
WETTABILITY  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Microfabrication and surface functionalization of soda lime glass through direct laser interference patterning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-29T11:00:53Z  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
1-17  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina  
dc.description.fil
Fil: Alamri, Sabri. Fraunhofer Institute For Material And Beam Technology Iws; Alemania  
dc.description.fil
Fil: Sürmann, Paul Alexander. Fraunhofer Institute For Material And Beam Technology Iws; Alemania  
dc.description.fil
Fil: Kunze, Tim. Fraunhofer Institute For Material And Beam Technology Iws; Alemania  
dc.description.fil
Fil: Lasagni, Andrés Fabián. Technische Universität Dresden; Alemania  
dc.journal.title
Nanomaterials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/nano11010129