Artículo
Microfabrication and surface functionalization of soda lime glass through direct laser interference patterning
Soldera, Marcos Maximiliano
; Alamri, Sabri; Sürmann, Paul Alexander; Kunze, Tim; Lasagni, Andrés Fabián
Fecha de publicación:
01/2021
Editorial:
MDPI AG
Revista:
Nanomaterials
ISSN:
2079-4991
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
All-purpose glasses are common in many established and emerging industries, such as microelectronics, photovoltaics, optical components, and biomedical devices due to their outstanding combination of mechanical, optical, thermal, and chemical properties. Surface functionalization through nano/micropatterning can further enhance glasses’ surface properties, expanding their applicability into new fields. Although laser structuring methods have been successfully employed on many absorbing materials, the processability of transparent materials with visible laser radiation has not been intensively studied, especially for producing structures smaller than 10 µm. Here, interference-based optical setups are used to directly pattern soda lime substrates through non-lineal absorption with ps-pulsed laser radiation in the visible spectrum. Line-and dot-like patterns are fabricated with spatial periods between 2.3 and 9.0 µm and aspect ratios up to 0.29. Furthermore, laserinduced periodic surface structures (LIPSS) with a feature size of approximately 300 nm are visible within these microstructures. The textured surfaces show significantly modified properties. Namely, the treated surfaces have an increased hydrophilic behavior, even reaching a super-hydrophilic state for some cases. In addition, the micropatterns act as relief diffraction gratings, which split incident light into diffraction modes. The process parameters were optimized to produce high-quality textures with super-hydrophilic properties and diffraction efficiencies above 30%.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(PROBIEN)
Articulos de INST. DE INVESTIGACION Y DES. EN ING. DE PROCESOS, BIOTECNOLOGIA Y ENERGIAS ALTERNATIVAS
Articulos de INST. DE INVESTIGACION Y DES. EN ING. DE PROCESOS, BIOTECNOLOGIA Y ENERGIAS ALTERNATIVAS
Citación
Soldera, Marcos Maximiliano; Alamri, Sabri; Sürmann, Paul Alexander; Kunze, Tim; Lasagni, Andrés Fabián; Microfabrication and surface functionalization of soda lime glass through direct laser interference patterning; MDPI AG; Nanomaterials; 11; 1; 1-2021; 1-17
Compartir
Altmétricas