Artículo
Google matrix
Fecha de publicación:
11/2016
Editorial:
Scholarpedia
Revista:
Scholarpedia
ISSN:
1941-6016
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The Google matrix G of a directed network is a stochastic square matrix with nonnegative matrix elements and the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov, 1906-a) of transitions of a random surfer performing jumps on a network of nodes connected by directed links. The network is characterized by an adjacency matrix Aij with elements Aij=1 if node j points to node i and zero otherwise. The matrix of Markov transitions Sij is constructed from the adjacency matrix Aij by normalization of the sum of column elements to unity and replacing columns with only zero elements (dangling nodes) with equal elements 1/N where N is the matrix size (number of nodes). Then the elements of the Google matrix are defined as Gij=αSij+(1−α)/N.
Palabras clave:
COMPLEX NETWORKS
,
SPECTRUM
,
QUANTUM CHAOS
,
COMPLEX SYSTEMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Ermann, Leonardo; Frahm, Klaus; Shepelyansky, Dima; Google matrix; Scholarpedia; Scholarpedia; 11; 11; 11-2016
Compartir
Altmétricas