Artículo
On syzygies over 2-Calabi–Yau tilted algebras
Fecha de publicación:
01/2017
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize the syzygies and co-syzygies over 2-Calabi–Yau tilted algebras in terms of the Auslander–Reiten translation and the syzygy functor. We explore connections between the category of syzygies, the category of Cohen–Macaulay modules, the representation dimension of algebras and the Igusa–Todorov functions. In particular, we prove that the Igusa–Todorov dimensions of d-Gorenstein algebras are equal to d. For cluster-tilted algebras of Dynkin type D, we give a geometric description of the stable Cohen–Macaulay category in terms of tagged arcs in the punctured disc. We also describe the action of the syzygy functor in a geometric way. This description allows us to compute the Auslander–Reiten quiver of the stable Cohen–Macaulay category using tagged arcs and geometric moves.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Garcia Elsener, Ana Clara; Schiffler, Ralf; On syzygies over 2-Calabi–Yau tilted algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 470; 1-2017; 91-121
Compartir
Altmétricas