Mostrar el registro sencillo del ítem
dc.contributor.author
Santibáñez, M.
dc.contributor.author
Fuentealba, M.
dc.contributor.author
Vedelago, José Alberto
dc.contributor.author
Chacón, D.
dc.contributor.author
Mattea, Facundo
dc.contributor.author
Valente, Mauro Andres
dc.date.available
2022-11-23T12:09:10Z
dc.date.issued
2021-05
dc.identifier.citation
Santibáñez, M.; Fuentealba, M.; Vedelago, José Alberto; Chacón, D.; Mattea, Facundo; et al.; Experimental characterization and Monte Carlo simulations of the dose enhancement on the millimeter scale of PAGAT infused with gadolinium; Pergamon-Elsevier Science Ltd; Radiation Physics and Chemistry (Oxford); 186; 5-2021; 1-9
dc.identifier.issn
0969-806X
dc.identifier.uri
http://hdl.handle.net/11336/178649
dc.description.abstract
This study reports on the determination of the K-edge dose enhancement factor achieved in a polymer gel dosimeter based on acrylamide, known as PAGAT, infused with a high concentration of a clinical gadolinium-based compound. PAGAT dosimeters infused with gadolinium concentrations of 10 mg/mL and 20 mg/mL are characterized in terms of dose-response and sensitivity, obtaining the dose enhancement between two beam qualities for these Gd concentrations of clinical interest. Additionally, the dose enhancement ratio between these two concentrations was evaluated for each beam quality. To this aim, Gadodiamide solution, a Gd-based agent commonly used in clinics for magnetic resonance scanning, is used to manufacture Gd-infused dosimeters that are further irradiated with a 50 kVp X-ray beam in order to assess dose enhancement contributions exclusively from absorption from lower edges (L, M, etc.); subsequently, a 160 kVp spectrum optimized by yttrium and indium filtration is used to evaluate K-edge contributions. Gel dosimeter samples are prepared in spectrophotometric vials, and their readout is performed by optical density measurements, which is correlated with the absorbed dose. An appreciable increase was found in the K-edge dose enhancement factor (160kVp/50 kVp) for the samples with concentrations of 20 mg/mL and 10 mg/mL ranging from 1.20 to 1.61 and 1.10–1.41, respectively. These results could be interpreted as the contribution to the absorbed dose due the increment in the secondary radiation emitted from Gd atoms by K-edge interactions. Similarly, a relevant increase was observed in the dose enhancement when the Gd concentration is incremented from 10 mg/mL to 20 mg/mL obtaining factors of around 1.10–1.33 and 1.34–1.47 for the beam qualities 50 kVp and the optimized 160 kVp, respectively. Monte Carlo simulations using the PENELOPE main code are implemented aimed at complementing and comparing with the experimental results, showing differences of less than 4% for the K-edge dose enhancement factor and differences of less than 3% for the dose enhancement ratio for the studied beam qualities. In this regard, the results from the simulations support the reliability of the experimental measurements with this type of dosimeters within the studied concentration range. Finally, it is noticeable that the appreciable dose enhancement reported through this work was obtained infusing mass Gd as part of the Gadodiamide compound, already used as a contrast agent for magnetic resonance imaging, thus ensuring its suitability for clinical practices in humans.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DOSE ENHANCEMENT
dc.subject
GADODIAMIDE
dc.subject
GADOLINIUM AGENTS
dc.subject
GD-PAGAT DOSIMETRY
dc.subject
PAGAT DOSIMETRY
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Experimental characterization and Monte Carlo simulations of the dose enhancement on the millimeter scale of PAGAT infused with gadolinium
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-22T10:27:11Z
dc.journal.volume
186
dc.journal.pagination
1-9
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Santibáñez, M.. Universidad de La Frontera; Chile
dc.description.fil
Fil: Fuentealba, M.. Universidad de La Frontera; Chile
dc.description.fil
Fil: Vedelago, José Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Chacón, D.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad Nacional de Costa Rica; Costa Rica
dc.description.fil
Fil: Mattea, Facundo. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad de la Frontera; Chile. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Radiation Physics and Chemistry (Oxford)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0969806X21001833
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.radphyschem.2021.109533
Archivos asociados