Mostrar el registro sencillo del ítem

dc.contributor.author
Eyherabide, Hugo Gabriel  
dc.contributor.author
Samengo, Ines  
dc.date.available
2017-06-06T20:20:55Z  
dc.date.issued
2013-11  
dc.identifier.citation
Eyherabide, Hugo Gabriel; Samengo, Ines; When and why noise correlations are important in neural decoding; Society For Neuroscience; Journal Of Neuroscience; 33; 45; 11-2013; 17921-17936  
dc.identifier.issn
0270-6474  
dc.identifier.uri
http://hdl.handle.net/11336/17629  
dc.description.abstract
Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain–machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without knowledge of noise correlations in many more situations than previously thought.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society For Neuroscience  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Neural Correlations  
dc.subject
Information Theory  
dc.subject
Decoding  
dc.subject.classification
Biología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
When and why noise correlations are important in neural decoding  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2015-10-15T20:01:42Z  
dc.journal.volume
33  
dc.journal.number
45  
dc.journal.pagination
17921-17936  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Eyherabide, Hugo Gabriel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1523/JNEUROSCI.0357-13.2013  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/33/45/17921