Artículo
Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina
Fecha de publicación:
01/2013
Editorial:
Elsevier
Revista:
Ecological Indicators
ISSN:
1470-160X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the Southern Hemisphere, the lack of quantitative temperature records hampers the understanding of climate change since the Last Glaciation and refrains the comparison with the Northern Hemisphere records. To provide quantitative data, a 63-lake chironomid transfer functions was developed in Patagonia. Mean annual air temperature (MAT) was one ofthe mostimportantfactors explaining the distribution of chironomids while precipitation did not have any significant relationship with chironomid assemblages. The MAT model had a r2 of 0.64, a RMSE of 0.83 and a maximum bias of 1.81 ◦C, comparable to other transfer functions of this size. This model was applied to the Lake Potrok Aike (PTA) chironomid records which consisted of only four taxa (Phaenopsectra, Cricotopus, Smittia and Polypedilum). The chironomid-inferred air temperatures were colder-than-the-average (10.8 ◦C) during the Lateglacial with the coldest temperatures (9 ◦C in average) during the Antarctic Cold Reversal (ACR). Between ca. 8000 and 3500 cal. years BP, the chironomid-inferred air temperatures were warmer-than-the-average with a decreasing trend. From ca. 3500 cal. years BP to the present, the chironomid-inferred temperatures oscillated around the average. The difference between the chironomid-inferred air temperature in the surface sample and the climate normal(1961–1990) was 0.6 ◦C, suggesting that chironomids are sensitive enough to quantitatively reconstruct MAT at PTA. The general pattern of temperature changes reconstructed by the PTA chironomid record corresponded well to other quantitative records in the Southern Hemisphere. The results presented here show that investing in the development of chironomid transfer functions for quantitative climate research in the Southern Hemisphere is valuable.
Palabras clave:
Fossil Chironomids
,
Transfer Functions
,
Southern Patagonia
,
Paleoclimate
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Massaferro, Julieta; Larocque Tobler, Isabelle; Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina; Elsevier; Ecological Indicators; 24; 1-2013; 201-210
Compartir
Altmétricas