Mostrar el registro sencillo del ítem

dc.contributor.author
Ferrer, Luciana  
dc.contributor.author
McLaren, Mitchell  
dc.contributor.author
Brümmer, Niko  
dc.date.available
2022-10-21T11:25:15Z  
dc.date.issued
2021-07  
dc.identifier.citation
Ferrer, Luciana; McLaren, Mitchell; Brümmer, Niko; A speaker verification backend with robust performance across conditions; Academic Press Ltd - Elsevier Science Ltd; Computer Speech And Language; 71; 7-2021; 1-23  
dc.identifier.issn
0885-2308  
dc.identifier.uri
http://hdl.handle.net/11336/174291  
dc.description.abstract
In this paper, we address the problem of speaker verification in conditions unseen or unknown during development. A standard method for speaker verification consists of extracting speaker embeddings with a deep neural network and processing them through a backend composed of probabilistic linear discriminant analysis (PLDA) and global logistic regression score calibration. This method is known to result in systems that work poorly on conditions different from those used to train the calibration model. We propose to modify the standard backend, introducing an adaptive calibrator that uses duration and other automatically extracted side-information to adapt to the conditions of the inputs. The backend is trained discriminatively to optimize binary cross-entropy. When trained on a number of diverse datasets that are labeled only with respect to speaker, the proposed backend consistently and, in some cases, dramatically improves calibration, compared to the standard PLDA approach, on a number of held-out datasets, some of which are markedly different from the training data. Discrimination performance is also consistently improved. We show that joint training of the PLDA and the adaptive calibrator is essential — the same benefits cannot be achieved when freezing PLDA and fine-tuning the calibrator. To our knowledge, the results in this paper are the first evidence in the literature that it is possible to develop a speaker verification system with robust out-of-the-box performance on a large variety of conditions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS  
dc.subject
ROBUST CALIBRATION  
dc.subject
SPEAKER VERIFICATION  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A speaker verification backend with robust performance across conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T16:15:57Z  
dc.journal.volume
71  
dc.journal.pagination
1-23  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: McLaren, Mitchell. No especifíca;  
dc.description.fil
Fil: Brümmer, Niko. No especifíca;  
dc.journal.title
Computer Speech And Language  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885230821000656?dgcid=rss_sd_all  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csl.2021.101258